Compact Adversary Structures

Martin Hirt
ETH Zurich

Theory and Practice of MPC, Aarhus, May 2016

Motivation II

Threshold-Adversary Setting
- Characterization: \(n, t \in \mathbb{N} \)
- E.g.: \(n = 7, t = 3 \)
 \[Z = \{ (\text{Cinderella}, \text{Depp}), (\text{Peggie}, \text{Dumbo}), \ldots \} \]
- Complexity of MPC: \(\text{Polyn}(n, 1) \)

General-Adversary Setting
- Characterization: \(\mathcal{P} \) with \(|\mathcal{P}| = n \) \(Z \subseteq 2^\mathcal{P} \)
- E.g. \(\mathcal{P} = \{ (\text{Cinderella}, \text{Depp}), (\text{Peggie}, \text{Dumbo}), \ldots \} \)
- Complexity of MPC: \(\text{Polyn}(|\mathcal{P}|, |Z|) = \text{Exp}(n) \)

However: For "natural" \(Z \), size \(|Z| \in \text{Exp}(n) \)

Outline

- General Adversaries: The Basics
- \(\forall \) constructions \(\exists \) adversary structures \(Z \) s.t. \(|\pi_Z| \in \text{Exp}(n) \)
- MPC for Adversary Structures (recap)
- MPC for Delta Structures
- Conclusions

Notation

- Party set \(\mathcal{P} \), \(|\mathcal{P}| = n \) here: \(\mathcal{P} = [n] \) (Adv. chooses one of them)
- Monotone adversary structure \(Z = \{ Z_1, Z_2, \ldots, Z_\ell \} \subseteq 2^\mathcal{P} \)
 \footnotesize{(Monotone: \(Z \subseteq Z' \) \(\Rightarrow \) \(Z \subseteq Z' \))}

Definitions

- \(Q^t(P, Z) \) \(: \Leftrightarrow \forall Z_1, Z_2 \in Z: Z_1 \cup Z_2 \neq \mathcal{P} \) (no two sets add up to \(\mathcal{P} \))
- \(Q^t_{\text{max}}(P, Z) \) \(: \Leftrightarrow Q^t(P, Z) \land \exists Z' \subseteq Z : Q^t(P, Z') \) (bigger \(Z' \) are not \(Q^t \))

Results

- I.T. passive, crypto. active: \(t < n/2 \) \(Q^t(P, Z) \)
- I.T. active: \(t < n/3 \) \(Q^t(P, Z) \)
- Asynchronous, perfect: \(t < n/4 \) \(Q^t(P, Z) \)

Lessem, north, guidon, nemo, \(\text{Polyn}, \text{Exp} \),

Length of GA MPC Protocols – Roadmap

Lemma: \(\forall \) constructions \(\exists \) adversary structures \(Z \) s.t. \(|\pi_Z| \in \text{Exp}(n) \)

Proof Roadmap
1. Count maximal adversary structures for given \(n \) (lower bound)
2. Derive length of GA MPC protocols (for some adversary structures)
Outline

• General Adversaries: The Basics
• \forall constructions \exists adversary structures \mathcal{Z} s.t. |\pi_{\mathcal{Z}}| \in \text{Exp}(n)
 - MPC for Adversary Structures (recap)
 - MPC for Delta Structures
 - Conclusions

Counting Q^2-Maximal Adversary Structures

Idea of Construction
\[n \text{ even, } t = n/2 - 1, \quad i.e., \quad t + 1 = n/2 \]

Construction
1. Fix \(\mathcal{P} = [n] \) with \(n \) even, let \(t = n/2 - 1 \), and \(\mathcal{Z} = \{ \mathcal{Z} \subseteq \mathcal{P} : |\mathcal{Z}| \leq t \} \).

Counting Q^2-Maximal Adversary Structures (continued)

Construction
2. Let \(B = (B_1, B_2, \ldots, B_\ell) := \{ B \subseteq [n-1] : |B| = t+1 \} \).

Claim: \(\forall Z \subseteq \mathcal{P}, |Z| = t+1 \text{ : } (Z \in B) \text{ or } (Z^c \in B) \).

Proof:
A) If \(n \notin \mathcal{Z} \), then \(Z \in B \).
B) Otherwise, \(Z^c \) is a \((t+1) \)-subset of \(P \) with \(n \notin Z^c \), hence \(Z^c \in B \).

Proof of Q^2:
Consider \(Z_1, Z_2 \in Z \), then...
A) \(Z_1 \in Z \text{ or } Z_2 \in Z : |Z_1| + |Z_2| < n. \)
B) \(Z_1, Z_2 \in B : \exists i, j : Z_1 = B_i, Z_2 = B_j \) and \(i \neq j \Rightarrow B_i \neq B_j \cup Z, B_j \neq B_i \cup Z \).

Proof of Maximality: Consider \(Z \) to be appended to \(\hat{Z} \), then...
A) \(|\hat{Z}| \leq t : Z \) is already contained in \(\hat{Z} \).
B) \(|\hat{Z}| \geq t+2 : Z^c \) is in \(\hat{Z} \), hence \(\hat{Z} \cup \{Z\} \) violates Q^2.
C) \(|\hat{Z}| = t+1 : \exists Z \in B \) (contained), or \(Z^c \in B \) (violates Q^2).

Counting Q^2-Maximal Adversary Structures (continued)

Analysis
\[\ell = \binom{n-1}{t+1} \geq 2^t = 2^{n/2-1} \]

There are (at least) \(2^{n/2-1} \) different Q^2-maximal adversary structures.
MPC: Classic View

![MPC: Classic View Diagram]

Security Statement
What Adv can achieve in Real, she can also achieve in Ideal, while corrupting the same users (and never `g`).

Limitations
- Implicit assumption: Ideal is “good” if and only if `g` is honest.
- Guarantees only if few enough players are corrupted → example.

MPC: Modern View

![MPC: Modern View Diagram]

Security Statement
What Adv can achieve in Ideal World, she can also achieve in Real World, assuming: Ideal is “good” if and only if `g` is honest.

Construction
- Given `P`, all sets `Z ⊆ P` with `|Z| < |P|/2` are tolerated “for free”.
- Specify delta structure `ΔZ` with additional (larger) sets `Z`.
- Automatically “removes” incompatible small sets `Z`.

Definitions
- **Delta Structure** `ΔZ = (Z₁, Z₂, ⋯, Zₙ) ⊆ 2^P` (usually not monotone)
- **Monotone Closure** `Δ(Z) := \{Z ⊆ P | \exists Z' ∈ Δ(Z) : Z ⊆ Z'\}` (include subsets)

Security
- Secure against delta structure `ΔZ` implies secure against adversary structure `Δ(Z)`.

MPC for General Adversary Structures

Given
- Threshold 3-PC Protocol secure for Player Simulation ([BGW] does the job)
- Target `(P, Δ(Z))` with `Q^2(P, Δ(Z))` (to be constructed).

Construction
A) `|Z| ≤ 2`: There is a trusted party `∃P_1 ∈ P`.
B) If `|Z| ≥ 3`:
 1. Partition `Z` into `Z₁, Z₂, Z₃` of similar size.
 2. Construct MPC protocols `Δ`, for each `Z′ = Z \ \ Z_i`.
 3. Let `P₁`, `P₂`, `P₃` run threshold MPC with `n = 3, t = 1`.

Analysis
- Every `Z ∈ Z` is contained in two `Z′` → these parties behave honestly in threshold MPC → honest majority.
- Efficiency: `Exp(recursion depth) = Exp(log(|Z|)) = Poly(|Z|)`.

Delta Structures

Intuition
- Given `P`, all sets `Z ⊆ P` with `|Z| < |P|/2` are tolerated “for free”.
- Specify delta structure `ΔZ` with additional (larger) sets `Z`.
- Automatically “removes” incompatible small sets `Z`.

Definitions
- **Delta Structure** `ΔZ = (Z₁, Z₂, ⋯, Zₙ) ⊆ 2^P` (usually not monotone)
- **Monotone Closure** `Δ(Z) := \{Z ⊆ P | \exists Z' ∈ Δ(Z) : Z ⊆ Z'\}` (include subsets)
- **Enforced add** `Z₁ ∪ Z₂ := \{Z ∈ Z₁ | Z' ∉ Z₂\} ∪ Z₂`
- **Induced structure** `Δ(Z) := \{Z ∈ P | |Z| < |P|/2\} ∪ Δ(Z)`

Security
- Secure against delta structure `ΔZ` implies secure against adversary structure `Δ(Z)`.

MPC for Delta Structures

Given
- Threshold `n`-PC Protocol secure for Player Simulation ([BGW] does the job).
- Target `(P, Δ(Z))` with `Q^2(P, Δ(Z))` (to be constructed).

Construction
A) `|Δ(Z)| ≤ 2`: See next slides.
B) If `|Δ(Z)| ≥ 3`:
 1. Partition `Δ(Z)` into `Δ(Z₁), Δ(Z₂), Δ(Z₃)` of similar size.
 2. Construct MPC protocols `Δ`, for each `Δ(Z)' = Δ(Z) \ Δ(Z)`.
 3. Let `P₁`, `P₂`, `P₃` run threshold MPC with `n = 3, t = 1`.

Analysis
- Every `Z ∈ Δ(Z)` is contained in two `Δ(Z)'` → honest majority.
- Efficiency: `Exp(recursion depth) = Exp(log(|Δ(Z)|)) = Poly(|Δ(Z)|)`.

MPC for Delta Structures (cont’d)

Adding one Adversary Set
- Given: `if` for `P, Z` with `Q^2(P, Z)` and an additional set `Z₁ ⊆ P`.
- Goal: Construct `#` for `P, (Z ∪ \{Z₁\})`.

Construction
A) `Z₁` is sufficient:
\[Z₁ \text{ is sufficient}\]

\[P = \{P₁, P₂, \ldots, Pₙ\}, k = \{Z₁\} \text{ (honest parties in } Z₁)\].

1. `P₁ = \{P₁, P₂, \ldots, Pₙ\}`, tolerating `k-1` corruptions.
 - `k` parties
 - `k = 1` copies of `P_i`

Lemma: The above construction is secure against `(Z ∪ \{Z₁\})`.

Proof:
Consider `Z ∈ (Z ∪ \{Z₁\})`.
A) Suppose `Z ∈ Z, Z ∪ Z₁ ≠ P`. The simulations of honest `P₁`’s have honest majority.
B) Suppose `Z = Z₁`. All `P_i` in `Z` are correctly simulated!

Efficiency: `Poly(n)` blow-up on for additional set `Z₁`.

Outline

- General Adversaries: The Basics
- `∀` constructions 3 adversary structures `Z` s.t. `|π| ∈ Exp(n)`
- MPC for Adversary Structures (recap)
- MPC for Delta Structures
- Conclusions
Adding multiple Adversary Set

- Given: π for P, Z and k additional sets $Z_1, \ldots, Z_k \subseteq P$.
- Goal: Construct π' for $P, (Z \cup \{Z_1, \ldots, Z_k\})$.

Construction

- Add sets one-by-one (in k steps)

Efficiency: $\exp(k)$ blow-up for k additional sets Z_1, \ldots, Z_k.

Putting Things Together

- $\log(|\Delta Z|)$ recursion steps for ΔZ, 2 recursion steps for threshold structure.
- Overall complexity: $\exp(\log(|\Delta Z|) + 2) = \text{Poly}(|\Delta Z|)$.

Conclusions

What we achieved

- Poly-time protocols for delta-structures
- Captures all adversary structures, efficient for "close-to-threshold"

What we missed

- Efficient protocols for delta-structures

What is Open

- Other description languages?