Efficient Constant-Round Multiparty Computation

Yehuda Lindell
Bar-Ilan University

Based on joint works with Aner Ben-Efraim, Eran Omri, Benny Pinkas, Nigel Smart, Eduardo Soria-Vasquez and Avishai Yanay

The Search for the Fastest Protocol

- Ideally- a best/fastest protocol
- In reality - it depends on the requirements and setting
- The main parameters:
- Computational power (in this talk we'll assume standard machines)
- Network speed: LAN vs WAN
- The requirements:
- Security level (semi-honest, covert, malicious)
- Speed: low latency or high throughput
- Note: online/offline really only helps for latency (or for settings where throughput demands have high variance)

Two Main Paradigms for Secure Computation

The garbled-circuit paradigm

- Constant-round
- High bandwidth
- Conclusion:
- Suitable for low latency goal
- Performs well even in slow networks
- High bandwidth means low throughput

The secret-sharing paradigm

- Many rounds (depth of circuit)
- Low bandwidth
- Conclusion:
- Suitable for high throughput goal
- Performs well on fast networks only
- Multiple rounds means bad performance for deep circuits

Some Sample Numbers - SHA256

- Circuit parameter: the SHA256 circuit has almost 100,000 AND gates and has depth 4000
- Garbled circuits:
- The best garbled circuit has 256 bits per AND gate
- The size of the garbled circuit is 25 Mb
- On a 10Gbps connection, cannot send more than 400 circuits per second
- Secret sharing:
- On a 30 ms latency network, minimum computation latency 120 seconds
- On a 1 ms latency network, minimum computation latency 4 seconds
- On a 0.1 ms latency network, minimum computation latency 0.4 seconds

Concrete Efficiency - The Last Decade

- Two-party computation (semi-honest)
- Fairplay (2004): 4383 gates, 7.09 seconds on a LAN
- Long series of works: Yao, GMW, OT extensions
- Latest (2014): 22,000 gates (6800 AND), 16 ms on a LAN
- Improvement factor of 2000; Moore's law gives 32
- Two-party computation (malicious)
- Long series of works: cut-and-choose Yao, LEGO-type, SPDZ, TinyOT,...
- Work on semi-honest has been significant in malicious setting
- Faster and smaller garbled circuits, OT extensions, circuit optimizations...

Concrete Efficiency - The Last Decade

- Multiparty computation (semi-honest)
- FairplayMP (2008): 1024 gates, 10 sec for 5 parties, 55 sec for 10 parties
- But only honest majority
- GMW implementation (CHKMR 2012): 5500 gates, 7 sec for 5 parties, 10 sec for 10 parties (but actually much faster)
- Multiparty computation (malicious)
- SPDZ, multiparty TinyOT
- Almost no work in the semi-honest setting: since FairplayMP nothing constant-round (for low latency goal even in slow networks)

Multiparty Computation

- Secret sharing approach:
- Information-theoretic protocols
- GMW
- Suitable for high throughput
- Garbled-circuit approach:
- The BMR protocol (Beaver-Micali-Rogaway), constant round
- Potential for low latency

The BMR Garbled Circuit

- Background - Yao's garbled circuits

- Relies inherently on the fact that one party garbles and the other evaluates
- Cannot work this way in the multiparty setting (collusions!)

The BMR Garbled Circuit

- The idea - each party contributes a secret to mask each value
- Let u, v be input wires and let w be output wire; let n be number of parties
- Each party P_{i} chooses random keys $k_{x, i}^{0}$ and $k_{x, i}^{1}$ for each wire $x \in\{u, v, w\}$
- For every $a, b \in\{0,1\}$ and every $i \in\{1, \ldots, n\}$, double-encrypt $k_{w, i}^{g(a, b)}$ under the keys $k_{u, 1}^{a}, k_{u, 2}^{a}, \ldots, k_{u, n}^{a}$ and $k_{v, 1}^{b}, k_{v, 2}^{b}, \ldots, k_{v, n}^{b}$
- Using a PRG: $c_{a, b}=\oplus_{i=1}^{n}\left(G\left(k_{u, i}^{a}\right) \oplus G\left(k_{v, i}^{b}\right)\right) \oplus\left(k_{w, 1}^{g(a, b)}\|\cdots\| k_{w, n}^{g(a, b)}\right)$
- Using a PRF: $\forall j c_{a, b}^{j}=\oplus_{i=1}^{n}\left(F_{k_{u, i}^{a}}(g \| j) \oplus F_{k_{v, i}^{b}}(g \| j)\right) \oplus k_{w, j}^{g(a, b)}$

Point and Permute

- For every wire u, parties generate a secret random $\lambda_{u} \in\{0,1\}$
- The value $\lambda_{u} \oplus \alpha$ is revealed, where α is the real value on the wire
- On input wires, if u is associated with P_{i}^{\prime} s input, then it receives λ_{u}
- On output wires, λ_{u} is made public
- The actual ciphertext equation:

$$
\forall j \in[n]: c_{a, b}^{j}=\bigoplus_{i=1}^{n}\left(F_{k_{u, i}}^{a}(g \| j) \oplus F_{k_{v, i}^{b}}(g \| j)\right) \oplus k_{w, j}^{g\left(a \oplus \lambda_{w}, b \oplus \lambda_{v}\right) \oplus \lambda_{w}}
$$

The Original BMR Protocol

- Primary observation:given keys on all wires, the circuit needed to construct the BMR circuit is of constant depth
- Use any existing protocol with rounds=O(depth) to securely compute the BMR circuit
- Semi-honest: use GMW; each party inputs result of PRF computations
- Malicious: need to work harder; BMR only did honest majority
- Use general compiler from semi-honest to malicious
- Need to be constant round (so coin-tossing of Pass)

The Aim

- Optimize BMR in the semi-honest setting
- Joint work with Aner Ben-Efraim and Eran Omri
- Construct a BMR protocol for the malicious setting
- Using SPDZ - joint work with Benny Pinkas, Nigel Smart and Avishay Yanay (CRYPTO 2015)
- Using SHE directly - joint work with Nigel Smart and Eduardo Soria-Vazquez

FairplayMP

- Used BGW to compute the equation for the garbled gate
- Map the concatenation of all keys to a single field element
- Natural over an arithmetic circuit
- Drawbacks of approach:
- Only for an honest majority (uses BGW)
- Very large field computations

Optimizing Semi-Honest BMR

- Main contributions:
- Adapt free-XOR (when using arithmetic circuit, requires a characteristic-2 field)
- Construct a protocol based on OT (no honest majority)
- Construct faster BGW-based protocols
- FairplayMP worked in a prime field; coin flipping of λ_{u} values is complex
- Implement and compare to GMW

Computing Garbled Gates

- We translate the equation into an arithmetic circuit
- The equation for gate function $g(a, b)$:

$$
c_{a, b}^{j}= \begin{cases}\oplus_{i=1}^{n}\left(F_{k_{u, i}^{a}}(g \| j) \oplus F_{k_{v, i}^{b}}(g \| j)\right) \oplus k_{w, j}^{0} & \text { if } g(a, b)=\lambda_{w} \\ \oplus_{i=1}^{n}\left(F_{k_{u, i}^{a}}(g \| j) \oplus F_{k_{v, i}^{b}}(g \| j)\right) \oplus k_{w, j}^{1} & \text { if } g(a, b) \neq \lambda_{w}\end{cases}
$$

Computing Garbled Gates

- We translate the equation into an arithmetic circuit
- The equation for an AND gate:

$$
c_{a, b}^{j}=\left\{\begin{array}{l}
\oplus_{i=1}^{n}\left(F_{k_{u, i}^{a}}(g \| j) \oplus F_{k_{v, i}^{b}}(g \| j)\right) \oplus k_{w, j}^{0} \quad \text { if }\left(a \oplus \lambda_{u}\right) \cdot\left(b \oplus \lambda_{v}\right)=\lambda_{w} \\
\oplus_{i=1}^{n}\left(F_{k_{u, i}^{a}}^{a}(g \| j) \oplus F_{k_{v, i}^{b}}(g \| j)\right) \oplus k_{w, j}^{1} \quad \text { if }\left(a \oplus \lambda_{u}\right) \cdot\left(b \oplus \lambda_{v}\right) \neq \lambda_{w}
\end{array}\right.
$$

Computing Garbled Gates

- We translate the equation into an arithmetic circuit
- The equation for an AND gate:

$$
c_{a, b}^{j}=\oplus_{i=1}^{n}\left(F_{k_{u, i}^{a}}(g \| j) \oplus F_{k_{v, i}^{b}}(g \| j)\right) \oplus \begin{cases}k_{w, j}^{0} & \text { if }\left(a \oplus \lambda_{u}\right) \cdot\left(b \oplus \lambda_{v}\right)=\lambda_{w} \\ k_{w, j}^{1} & \text { if }\left(a \oplus \lambda_{u}\right) \cdot\left(b \oplus \lambda_{v}\right) \neq \lambda_{w}\end{cases}
$$

Arithmetizing the Expression

- The equation for AND:

$$
\begin{aligned}
c_{a, b}^{j}= & \oplus_{i=1}^{n}\left(F_{k_{u, i}^{a}}(g \mid j) \oplus F_{k_{v, i}^{b}}(g \| j)\right) \\
& \oplus\left(k_{w, j}^{\lambda_{w}} \cdot\left(1-\left(a \oplus \lambda_{u}\right) \cdot\left(b \oplus \lambda_{v}\right)\right)\right) \\
& \oplus\left(k_{w, j}^{1-\lambda_{w}} \cdot\left(a \oplus \lambda_{u}\right) \cdot\left(b \oplus \lambda_{v}\right)\right)
\end{aligned}
$$

Free XOR

- For every $i \in[n]$, party P_{i} chooses a random R_{i}
- For every wire u, P_{i} chooses a random $k_{u, i}^{0}$ and sets $k_{u, i}^{1}=k_{u, i}^{0} \oplus R_{i}$
- A side benefit - a much simpler BMR equation!
- $c_{a, b}^{j}=\oplus_{i=1}^{n}\left(F_{k_{u, i}^{a}}(g \| j) \oplus F_{k_{v, i}^{b}}(g \| j)\right)$

$$
\oplus k_{w, j}^{0} \oplus\left(R_{j} \cdot\left(\left(a \oplus \lambda_{u}\right) \cdot\left(b \oplus \lambda_{v}\right) \oplus \lambda_{w}\right)\right)
$$

- This needs 2 instead of 4 multiplications for AND (as well as free for XOR)

A BGW-Based Protocol (the idea)

- $c_{a, b}^{j}=\oplus_{i=1}^{n}\left(F_{k_{u, i}^{a}}(g \| j) \oplus F_{k_{v, i}^{b}}(g \| j)\right) \oplus k_{w, j}^{0} \oplus\left(R_{j} \cdot\left(\left(a \oplus \lambda_{u}\right) \cdot\left(b \oplus \lambda_{v}\right) \oplus \lambda_{w}\right)\right)$
- The parties all hold shares of each $\lambda\left(\lambda_{u}^{1} \oplus \cdots \oplus \lambda_{u}^{n}=\lambda_{u}\right)$
- Each party P_{i} inputs
- $F_{k_{u, i}^{a}}(g \| j) \oplus F_{k_{v, i}^{b}}(g \| j)$ for all $j \quad\left(P_{j}\right.$ inputs $\left.F_{k_{u, j}^{a}}(g \| j) \oplus F_{k_{v, j}^{b}}(g \| j) \oplus k_{w, j}^{0}\right)$
- R_{i}
- $a \oplus \lambda_{u}^{i}$
- $b \oplus \lambda_{v}^{i}$
- λ_{w}^{i}
(in contrast to
FairplayMP)
- Use BGW to compute the result (2 multiplications, 4 additions)

BGW-Based Protocols

- We have multiple optimizations
- Fast field multiplication: using PCLMULQDQ and utilizing "small" values
- Reducing number of rounds: fewer degree reductions
- The result of $R_{j} \cdot\left(\left(a \oplus \lambda_{u}\right) \cdot\left(b \oplus \lambda_{v}\right) \oplus \lambda_{w}\right)$ is only added to other values, and so no need to do degree reduction on it
- And more...
- Complexity: cubic in the number of parties
- Each gate needs n multiplications, but multiplication is quadratic in BGW-semi-honest (computing Shamir shares is $O\left(n^{2}\right)$)

Honest Minority - OT-Based Protocol

- Main observation: we only need to multiply bits and a string by a bit
- Two-party string-bit multiplication with OT: compute $x \cdot b$

OT-Based Protocol

- Step 1: Compute pairwise XOR shares of $\lambda_{u} \cdot \lambda_{v}$
- This is just the XOR of products $\lambda_{u}^{i} \cdot \lambda_{v}^{i}$ and so can use bit-OT multiplication
- Step 2: Compute XOR shares of $\left(a \oplus \lambda_{u}\right) \cdot\left(b \oplus \lambda_{v}\right) \oplus \lambda_{w}$ for each $a, b \in\{0,1\}$ (local computation only)
- Step 3: Compute XOR shares of $R_{j} \cdot\left(a \oplus \lambda_{u}\right) \cdot\left(b \oplus \lambda_{v}\right) \oplus \lambda_{w}$
- This uses a 4 string-OT multiplications between each pair
- Step 4: XOR the result with the PRF values and broadcast

Evaluation

- CREATE (part of DETER):
- Intel Xeon $2.20 \mathrm{GHz}, 6$ core,
- Network with 0.1 ms ping time ($\approx 0.05 \mathrm{~ms}$ latency)
- Amazon Virginia-Virginia
- c4.8xlarge instances
- Network with 1 ms ping time ($\approx 0.5 \mathrm{~ms}$ latency)
- Amazon Virginia-Ireland
- c4.8xlarge instances
- Network with 75 ms ping time ($\approx 37.5 \mathrm{~ms}$ latency)

Evaluation

- Compare to GMW in [CHKMR12] on same platforms
- Uses optimized OT extensions
- GMW online and offline: OT on random inputs, in online single-bit sent only per AND gate
- BMR online and offline: build circuit offline, send input and compute online
- Run with:
- AES circuit: 6800 AND gates, depth $=40$
- SHA256 circuit: 90,825 AND gates, depth $=4000$
- SHA256* synthetic: 90,825 AND gates, depth=10, 100, 1000

Hypotheses

- GMW will win on very shallow circuits in all networks
- BMR will win on deep circuits in all networks
- BMR will win on not shallow circuits in slow networks
- BMR-online will beat GMW-online except for very shallow circuits
- BGW-BMR will beat BGW-OT (but requires honest majority)
- Questions:
- What is the effect of the number of parties?
- At what circuit-depth and network speed does BMR/GMW win?

Amazon Virginia-Ireland - WAN (37.5ms latency)

Total Time/\#Parties: Amazon Virginia-Ireland, Depth=4000, \#AND=91,000

Amazon Virginia - LAN (0.5ms latency)

CREATE - Fast LAN (0.05 ms latency)

Center for Research in Applied
Cryptography and Cyber Security

CREATE - Fast LAN (0.05ms latency)

The SHA256 Circuit - 90,825 AND gates:

		3	5	7	9	11	13	33
OT	Off	813 ± 127	1160 ± 135	1464 ± 106	1963 ± 95	2389 ± 116	2819 ± 122	14928 ± 817
	On	85 ± 15	138 ± 14	204 ± 22	260 ± 28	324 ± 22	419 ± 23	1506 ± 12
BGW3	Off	517 ± 85	1064 ± 154	1864 ± 169	2917 ± 168	4234 ± 192	5825 ± 201	53257 ± 541
	On	81 ± 11	137 ± 15	193 ± 13	252 ± 24	321 ± 39	416 ± 36	1445 ± 130
BGW2	Off		930 ± 118	1799 ± 129	2528 ± 139	3946 ± 179	5690 ± 259	51098 ± 902
	On		135 ± 14	194 ± 13	253 ± 16	315 ± 32	412 ± 47	1485 ± 225
BGW4	Off	582 ± 70	1219 ± 126	2200 ± 193	3383 ± 164	4920 ± 158	6868 ± 170	60858 ± 657
	On	78 ± 11	138 ± 17	196 ± 18	251 ± 18	317 ± 30	419 ± 38	1471 ± 190
GMW	Off	637 ± 67	719 ± 165	789 ± 143	906 ± 261	964 ± 236	953 ± 159	1463 ± 120
(d=4000)	On	391 ± 37	466 ± 140	531 ± 137	636 ± 241	644 ± 196	700 ± 134	1113 ± 81
GMW	Off	674 ± 42	732 ± 170	715 ± 131	873 ± 255	889 ± 212	895 ± 171	1372 ± 158
(d=1000)	On	141 ± 34	187 ± 134	213 ± 138	301 ± 230	314 ± 212	292 ± 169	387 ± 79
GMW	Off	610 ± 42	648 ± 129	755 ± 156	836 ± 242	876 ± 205	870 ± 138	1346 ± 147
(d=100)	On	88 ± 70	105 ± 105	91 ± 88	167 ± 196	176 ± 191	139 ± 134	143 ± 54
GMW	Off	585 ± 76	644 ± 148	716 ± 162	802 ± 223	862 ± 201	857 ± 130	1364 ± 170
(d=10)	On	68 ± 97	70 ± 92	105 ± 246	156 ± 208	124 ± 168	127 ± 150	135 ± 86

Amazon Virginia - LAN (0.5ms latency)

The AES Circuit - 6800 AND gates:

		3	5	7	9	11	13
OT	Off	53 ± 22	91 ± 152	324 ± 1344	429 ± 417	701 ± 1284	1629 ± 3027
	On	6 ± 10	17 ± 17	28 ± 27	43 ± 96	37 ± 24	59 ± 162
BGW3	Off	29 ± 11	103 ± 165	249 ± 364	394 ± 311	838 ± 1305	1008 ± 584
	On	13 ± 15	23 ± 35	28 ± 24	38 ± 20	58 ± 171	59 ± 138
BGW2	Off		88 ± 140	270 ± 322	412 ± 317	670 ± 290	782 ± 339
	On		23 ± 15	33 ± 68	44 ± 78	38 ± 100	46 ± 20
BGW4	Off	47 ± 85	148 ± 243	361 ± 394	682 ± 514	1078 ± 287	1815 ± 2455
	On	8 ± 12	22 ± 16	35 ± 32	36 ± 23	66 ± 206	46 ± 22
GMW	Off	127 ± 47	126 ± 48	125 ± 47	164 ± 186	111 ± 62	116 ± 85
	On	27 ± 11	35 ± 15	43 ± 55	62 ± 142	68 ± 160	119 ± 211

BGW-BMR beats OT-BMR for few parties only;

Amazon Virginia-Ireland - WAN (37.5ms latency)

The AES Circuit - 6800 AND gates:

		3	7	13
OT	Off	698 ± 930	1093 ± 1249	9699 ± 6119
	On	138 ± 88	107 ± 87	362 ± 515
BGW3	Off	329 ± 688	2314 ± 1218	9774 ± 8181
	On	143 ± 81	142 ± 76	329 ± 533
BGW2	Off		2212 ± 1440	8745 ± 6832
	On		148 ± 92	264 ± 409
BGW4	Off	498 ± 737	3149 ± 2065	13298 ± 10576
	On	139 ± 78	159 ± 70	308 ± 473
GMW	Off	231 ± 143	277 ± 1067	382 ± 290
	On	3337 ± 166	3232 ± 9	3341 ± 213

The SHA256 Circuit - 90,825 AND gates:

		3	7	13
OT	Off	6426 ± 1651	10291 ± 4968	25215 ± 4784
	On	172 ± 76	226 ± 62	456 ± 357
BGW3	Off	5404 ± 11751	17011 ± 23574	38584 ± 35997
	On	182 ± 77	237 ± 91	520 ± 659
BGW2	Off		14781 ± 12134	37585 ± 17255
	On		283 ± 86	459 ± 325
BGW4	Off	8124 ± 8000	23521 ± 20794	65736 ± 45895
	On	226 ± 78	282 ± 86	454 ± 281
GMW	Off	850 ± 900	5002 ± 10643	5042 ± 9212
$($ d=4000)	On	309741 ± 32130	333996 ± 92024	329220 ± 31340
GMW	Off	701 ± 556	3581 ± 4976	7932 ± 16242
$($ d=1000)	On	77147 ± 4031	83168 ± 19932	82111 ± 5584
GMW	Off	735 ± 509	2610 ± 8173	4969 ± 9222
$(\mathrm{~d}=100)$	On	8038 ± 518	8327 ± 80	8341 ± 271
GMW	Off	598 ± 362	1180 ± 521	5360 ± 12829
(d=10)	On	880 ± 75	906 ± 25	904 ± 84

At depth 100, GMW wins in total time even in a WAN, but is an order of magnitude slower in online time

Hypotheses

- GMW will win on very shallow circuits in all networks
- BMR will win or if deep is 4000 , then not true in very fast networks
- BMR will win if 100 is not shallow, then true only for few parties (total time)
- BMR-online will beat GI only for few parties OR deep circuits (in slow network) cuits X
- BGW-BMR will beat BGW-OT (only for few parties onest majority) X
- Questions:
- What is the effect of the number of parties? marginal in GMW; significant in BMR
- At what circuit-depth and network speed does BMR/GMW win?
it depends, but GMW far better than expected

Constant-Round for Malicious Adversaries

- The only multiparty protocol ever implemented for malicious adversaries is SPDZ
- In a slow network with a deep circuit, this cannot perform well
- Multiparty TinyOT is also concretely efficient, but has many rounds
- Can we use the BMR paradigm in this setting as well?
- A major obstacle: forcing the parties to input the correct PRF values is inherently inefficient (expensive zero knowledge)

SPDZ-BMR [L-Pinkas-Smart-Yanay CRYPTO15]

- Main idea: Use SPDZ to compute the BMR garbled circuit
- Major obstacle- proving correctness of PRF values
- Solution:
- Don't force the parties to input correct PRF values
- We prove that inputting incorrect PRF values can only result in abort
- The only problem can be if it changes from one valid value to another
- Obstacle 2 - need to ensure that λ_{u} values are pseudorandom; coin tossing expensive
- Solution:SPDZ provides coin tossing almost for free

SPDZ-BMR [L-Pinkas-Smart-Yanay CRYPTO15]

- Obstacle 3 - need to force consistency of λ_{u}^{i} values when wire u is input to multiple gates
- Solution:
- Construct a single arithmetic circuit for computing all gates at once
- Depth of circuit is constant
- The main goal: reduce the number of multiplications in the BMR-circuit

SPDZ-BMR

- The gate computation works as follows:
- Compute the "indicator variables"

$$
\left[x_{a}\right]=\left(f_{g}\left(\left[\lambda_{a}\right],\left[\lambda_{b}\right]\right) \stackrel{?}{\neq}\left[\lambda_{c}\right]\right)=\left(f_{g}\left(\left[\lambda_{a}\right],\left[\lambda_{b}\right]\right)-\left[\lambda_{c}\right]\right)^{2}
$$

- Multiply by the output keys:

$$
\left[\mathbf{v}_{c, x_{a}}\right]=\left(1-\left[x_{a}\right]\right) \cdot\left[\mathbf{k}_{c, 0}\right]+\left[x_{a}\right] \cdot\left[\mathbf{k}_{c, 1}\right]
$$

- Add in the PRF masks and open:

$$
\left[\mathbf{A}_{g}\right]=\sum_{i=1}^{n}\left(\left[F_{k_{a, 0}^{i}}^{0}(g)\right]+\left[F_{k_{b, 0}^{i}}^{0}(g)\right]\right)+\left[\mathbf{v}_{c, x_{a}}\right]
$$

SPDZ-BMR Cost

- Size of circuit computing the BMR garbled circuit
- 13 multiplications per AND gate, and $\mathbf{7}$ multiplications per XOR gate
- Cost of computing the circuit using SPDZ
- For every wire, need to generate n shared random values
- Since each gate requires essentially generating n ciphertexts
- To create a shared random value each of n parties needs to encrypt input data (which must be valid)
- Each of these requires a ZKPOK, with $O(n)$ SHE encryptions
- Overall number of SHE multiplications per gate: $O\left(n^{3}\right)$
- Very fast online time - only 2 rounds and local computation

SPDZ-SHE [L-Smart-Soria-Vazquez 2016]

- Main idea: Use somewhat homomorphic encryption (SHE) to directly compute the BMR garbled circuit
- Save the intermediary step of generating multiplication triples
- Major goal: reduce the depth of the circuit computing the BMR garbled circuit
- This has significant influence over the efficiency since it affects the size of the SHE parameters
- We achieve a quadratic number of multiplications only (but need an SHE of depth 3)

SPDZ-SHE

- A naïve approach yields a circuit of depth 4:
- Multiply to get indicator bit - 2 multiplications (need to square)
- Multiply indicator bit by keys - 1 more multiplication
- An additional multiplication is needed (as in SPDZ) to ensure correct output
- Our aim: reduce the depth of the circuit run inside SHE
- We construct equations multiplying key in directly
- Our equations do not always compute the correct key
- Our equation always computes the correct key or its additive complement

SPDZ-BMR

- A depth-2 equation for the AND gate:

$$
\begin{aligned}
\left\langle\mathbf{v}_{c, x_{A}}\right\rangle=(1 & \left.-\left\langle\lambda_{a}\right\rangle\right) \cdot\left(\left\langle\lambda_{c}\right\rangle \cdot\left\langle\tilde{\mathbf{k}}_{c, 1}\right\rangle+\left(1-\left\langle\lambda_{c}\right\rangle\right) \cdot\left\langle\tilde{\mathbf{k}}_{c, 0}\right\rangle\right) \\
& +\left\langle\lambda_{a}\right\rangle \cdot\left(\left(\left\langle\lambda_{b}\right\rangle-\left\langle\lambda_{c}\right\rangle\right) \cdot\left\langle\tilde{\mathbf{k}}_{c, 1}\right\rangle+\left(1-\left\langle\lambda_{b}\right\rangle-\left\langle\lambda_{c}\right\rangle\right) \cdot\left\langle\tilde{\mathbf{k}}_{c, 0}\right\rangle\right)
\end{aligned}
$$

- For example, if $\lambda_{a}=\lambda_{b}=\lambda_{c}=0$ then we get $k_{c, 0}$
- For example, if $\lambda_{a}=\lambda_{b}=\lambda_{c}=1$ then we get $-k_{c, 0}$
- This is a problem:
- A party learns information if it knows that it received the value or its complement

SPDZ-BMR

- The solution
- No party knows the basic key values
- The key used to mask is the square of these values
- There is additional cost since the basic key values now need to be generated using an SHE "generate random"
- Thus, there are more multiplications but the depth is lower

Summary

- The BMR paradigm deserves more attention
- Semi-honest optimizations are an important first step
- Improvements on the circuit
- Surprising results regarding the BGW vs OT approaches
- We used SPDZ and SHE to compute for malicious
- What other methods can be used?

