
Efficient	Constant-Round	
Multiparty	Computation

Yehuda	Lindell
Bar-Ilan	University

Based	on	joint	works	with	Aner Ben-Efraim,	Eran Omri,	Benny	Pinkas,	
Nigel	Smart,	Eduardo	Soria-Vasquez	and	Avishai Yanay

The	Search	for	the	Fastest	Protocol

• Ideally	– a	best/fastest	protocol
• In	reality	– it	depends	on	the	requirements	and	setting
• The	main	parameters:

• Computational	power	(in	this	talk	we’ll	assume	standard	machines)
• Network	speed:	LAN	vs	WAN

• The	requirements:
• Security	level	(semi-honest,	covert,	malicious)
• Speed:	low	latency	or	high	throughput

• Note:	online/offline	really	only	helps	for	latency	(or	for	settings	where	throughput	
demands	have	high	variance)

Two	Main	Paradigms	for	Secure	Computation

The	garbled-circuit	paradigm	
• Constant-round
• High	bandwidth

• Conclusion:	
• Suitable	for	low	latency	goal	
• Performs	well	even	in	slow	
networks
• High	bandwidth	means	low	
throughput

The	secret-sharing	paradigm
• Many	rounds	(depth	of	circuit)
• Low	bandwidth

• Conclusion:
• Suitable	for	high	throughput	goal
• Performs	well	on	fast	networks	
only
• Multiple	rounds	means	bad	
performance	for	deep	circuits

Some	Sample	Numbers	– SHA256

• Circuit	parameter:	the	SHA256	circuit	has	almost	100,000	AND	gates	
and	has	depth	4000
• Garbled	circuits:

• The	best	garbled	circuit	has	256	bits	per	AND	gate
• The	size	of	the	garbled	circuit	is	25Mb
• On	a	10Gbps	connection,	cannot	send	more	than	400	circuits	per	second

• Secret	sharing:
• On	a	30ms	latency	network,	minimum	computation	latency	120	seconds
• On	a	1ms	latency	network,	minimum	computation	latency	4 seconds
• On	a	0.1ms	latency	network,	minimum	computation	latency	0.4	seconds

Concrete	Efficiency	– The	Last	Decade

• Two-party	computation	(semi-honest)
• Fairplay (2004):	4383	gates,	7.09	seconds	on	a	LAN
• Long	series	of	works:	Yao,	GMW,	OT	extensions
• Latest	(2014):	22,000	gates	(6800	AND),	16ms	on	a	LAN
• Improvement	factor	of	2000;	Moore’s	law	gives	32

• Two-party	computation	(malicious)
• Long	series	of	works:	cut-and-choose	Yao,	LEGO-type,	SPDZ,	TinyOT,…

• Work	on	semi-honest	has	been	significant	in	malicious	setting
• Faster	and	smaller	garbled	circuits,	OT	extensions,	circuit	optimizations...

Concrete	Efficiency	– The	Last	Decade

• Multiparty	computation	(semi-honest)
• FairplayMP	(2008):	1024	gates,	10	sec	for	5	parties,	55	sec	for	10	parties

• But	only	honest	majority
• GMW	implementation	(CHKMR	2012):	5500	gates,	7	sec	for	5	parties,	10	sec	
for	10	parties	(but	actually	much	faster)

• Multiparty	computation	(malicious)
• SPDZ,	multiparty	TinyOT

• Almost	no	work	in	the	semi-honest	setting:	since	FairplayMP	nothing	
constant-round	(for	low	latency	goal	even	in	slow	networks)

Multiparty	Computation

• Secret	sharing	approach:
• Information-theoretic	protocols
• GMW
• Suitable	for	high	throughput

• Garbled-circuit	approach:
• The	BMR	protocol	(Beaver-Micali-Rogaway),	constant	round
• Potential	for	low	latency

The	BMR	Garbled	Circuit

• Background	– Yao’s	garbled	circuits

• Relies	inherently	on	the	fact	that	one	party	garbles	and	the	other	evaluates
• Cannot	work	this	way	in	the	multiparty	setting	(collusions!)

The	BMR	Garbled	Circuit

• The	idea	– each	party	contributes	a	secret	to	mask	each	value
• Let	𝑢, 𝑣 be	input	wires	and	let	𝑤 be	output	wire;	let	𝑛 be	number	of	parties
• Each	party	𝑃' chooses	random	keys	𝑘),'* and	𝑘),'+ for	each	wire	𝑥 ∈ {𝑢, 𝑣, 𝑤}
• For	every	𝑎, 𝑏 ∈ 0,1 and	every	𝑖 ∈ 1, … , 𝑛 ,	double-encrypt		𝑘6,'

7(9,:) under	the	
keys	𝑘<,+9 , 𝑘<,=9 ,…, 𝑘<,>9 and	𝑘?,+: , 𝑘?,=: ,…, 𝑘?,>:

• Using	a	PRG:	𝑐9,: = 	⊕'D+
> 𝐺(𝑘<,'9)⊕ 𝐺(𝑘?,':) 	⊕	 𝑘6,+

7 9,: ||⋯ ||𝑘6,>
7 9,:

• Using	a	PRF:		∀𝑗		𝑐9,:
J =	⊕'D+

> 𝐹LM,NO (𝑔| 𝑗 ⊕ 𝐹LQ,NR (𝑔| 𝑗 	⊕	𝑘6,J
7(9,:)

Point	and	Permute

• For	every	wire	𝑢,	parties	generate	a	secret	random	𝜆< ∈ {0,1}
• The	value	𝜆< ⊕ 𝛼 is	revealed,	where	𝛼 is	the	real	value	on	the	wire
• On	input	wires,	if	𝑢 is	associated	with	𝑃'’s	input,	then	it	receives	𝜆<
• On	output	wires,	𝜆< is	made	public

• The	actual	ciphertext	equation:	

∀𝑗 ∈ 𝑛 ∶ 	 𝑐9,:
J =⊕'D+

> 𝐹LM,NO (𝑔| 𝑗 ⊕ 𝐹LQ,NR (𝑔| 𝑗 	⊕ 	𝑘6,J
7 𝒂⊕𝝀𝒖,𝒃⊕𝝀𝒗 ⊕𝝀𝒘

The	Original	BMR	Protocol

• Primary	observation:	given	keys	on	all	wires,	the	circuit	needed	to	
construct	the	BMR	circuit	is	of	constant	depth

• Use	any	existing	protocol	with	rounds=O(depth)	to	securely	compute	
the	BMR	circuit
• Semi-honest:	use	GMW;	each	party	inputs	result	of	PRF	computations
• Malicious:	need	to	work	harder;	BMR	only	did	honest	majority

• Use	general	compiler	from	semi-honest	to	malicious
• Need	to	be	constant	round	(so	coin-tossing	of	Pass)

The	Aim

• Optimize	BMR	in	the	semi-honest	setting
• Joint	work	with	Aner Ben-Efraim and	Eran Omri

• Construct	a	BMR	protocol	for	the	malicious	setting
• Using	SPDZ	– joint	work	with	Benny	Pinkas,	Nigel	Smart	and	Avishay	Yanay
(CRYPTO	2015)
• Using	SHE	directly	– joint	work	with	Nigel	Smart	and	Eduardo	Soria-Vazquez

FairplayMP

• Used	BGW	to	compute	the	equation	for	the	garbled	gate
• Map	the	concatenation	of	all	keys	to	a	single	field	element
• Natural	over	an	arithmetic	circuit

• Drawbacks	of	approach:
• Only	for	an	honest	majority	(uses	BGW)
• Very	large	field	computations

Optimizing	Semi-Honest	BMR

• Main	contributions:
• Adapt	free-XOR	 (when	using	arithmetic	circuit,	requires	a	characteristic-2	field)
• Construct	a	protocol	based	on	OT	(no	honest	majority)
• Construct	faster	BGW-based	protocols

• FairplayMPworked	in	a	prime	field;	coin	flipping	of	𝜆< values	is	complex
• Implement	and	compare	to	GMW

Computing	Garbled	Gates

• We	translate	the	equation	into	an	arithmetic	circuit

• The	equation	for	gate	function	𝑔(𝑎, 𝑏):

𝑐9,:
J = \

⊕'D+
> 𝐹LM,NO (𝑔| 𝑗 ⊕ 𝐹LQ,NR (𝑔| 𝑗 ⊕𝑘6,J* 			if	𝑔 𝑎, 𝑏 = 𝜆6

⊕'D+
> 𝐹LM,NO (𝑔| 𝑗 ⊕ 𝐹LQ,NR (𝑔| 𝑗 ⊕𝑘6,J+ 			if	𝑔 𝑎, 𝑏 ≠ 𝜆6

Computing	Garbled	Gates

• We	translate	the	equation	into	an	arithmetic	circuit

• The	equation	for	an	AND gate:

𝑐9,:
J = \

⊕'D+
> 𝐹LM,NO (𝑔| 𝑗 ⊕ 𝐹LQ,NR (𝑔| 𝑗 ⊕ 𝑘6,J* 			if	 𝑎 ⊕ 𝜆< ⋅ 𝑏 ⊕ 𝜆? = 𝜆6

⊕'D+
> 𝐹LM,NO (𝑔| 𝑗 ⊕ 𝐹LQ,NR (𝑔| 𝑗 ⊕ 𝑘6,J+ 			if	 𝑎 ⊕ 𝜆< ⋅ 𝑏 ⊕ 𝜆? ≠ 𝜆6

Computing	Garbled	Gates

• We	translate	the	equation	into	an	arithmetic	circuit

• The	equation	for	an	AND gate:

𝑐9,:
J =⊕'D+

> 𝐹LM,NO (𝑔| 𝑗 ⊕ 𝐹LQ,NR (𝑔| 𝑗 ⊕ a
𝑘6,J* 			if	 𝑎 ⊕ 𝜆< ⋅ 𝑏 ⊕ 𝜆? = 𝜆6
𝑘6,J+ 			if	 𝑎 ⊕ 𝜆< ⋅ 𝑏 ⊕ 𝜆? ≠ 𝜆6

Arithmetizing the	Expression

• The	equation	for	AND:

𝑐9,:
J =		⊕'D+

> 𝐹LM,NO (𝑔| 𝑗 ⊕ 𝐹LQ,NR (𝑔| 𝑗

⊕ 𝑘6,J
bc ⋅ 1 − 𝑎 ⊕ 𝜆< ⋅ 𝑏 ⊕ 𝜆?

⊕ 𝑘6,J
+ebc ⋅ 𝑎 ⊕ 𝜆< ⋅ 𝑏 ⊕ 𝜆?

Free	XOR

• For	every	𝑖 ∈ [𝑛],	party	𝑃' chooses	a	random	𝑅'
• For	every	wire	𝑢,	𝑃' chooses	a	random	𝑘<,'* and	sets	𝑘<,'+ = 𝑘<,'* ⊕ 𝑅'
• A	side	benefit	– a	much	simpler	BMR	equation!

• 𝑐9,:
J =		⊕'D+

> 𝐹LM,NO (𝑔| 𝑗 ⊕ 𝐹LQ,NR (𝑔| 𝑗

⊕ 𝑘6,J* ⊕ 𝑅J ⋅ 𝑎 ⊕ 𝜆< ⋅ 𝑏 ⊕ 𝜆? ⊕ 𝜆6

• This	needs	2	instead	of	4	multiplications	for	AND	(as	well	as	free	for	XOR)

A	BGW-Based	Protocol	(the	idea)

• 𝑐9,:
J =		⊕'D+

> 𝐹LM,NO (𝑔| 𝑗 ⊕𝐹LQ,NR (𝑔| 𝑗 ⊕𝑘6,J* ⊕ 𝑅J ⋅ 𝑎⊕𝜆< ⋅ 𝑏⊕ 𝜆? ⊕𝜆6

• The	parties	all	hold	shares	of	each	𝜆 𝜆<+ ⊕⋯⊕𝜆<> = 𝜆<
• Each	party	𝑃' inputs

• 𝐹LM,NO (𝑔| 𝑗 ⊕𝐹LQ,NR (𝑔| 𝑗 for	all	𝑗 (𝑃J inputs	𝐹LM,rO (𝑔| 𝑗 ⊕𝐹LQ,rR (𝑔| 𝑗 ⊕ 𝑘6,J*)

• 𝑅'
• 𝑎 ⊕𝜆<'

• 𝑏⊕ 𝜆?'

• 𝜆6'

• Use	BGW	to	compute	the	result	(2	multiplications,	4	additions)

We	work	in	a	field	
large	enough	 for	𝑘 only	

(in	contrast	to	
FairplayMP)

BGW-Based	Protocols

• We	have	multiple	optimizations
• Fast	field	multiplication:	using	PCLMULQDQ	 and	utilizing	“small”	values
• Reducing	number	of	rounds:	fewer	degree	reductions

• The	result	of	𝑅J ⋅ 𝑎⊕ 𝜆< ⋅ 𝑏 ⊕ 𝜆? ⊕ 𝜆6 is	only	added	to	other	values,	and	so	no	
need	to	do	degree	reduction	on	it

• And	more…

• Complexity:	cubic in	the	number	of	parties
• Each	gate	needs	𝑛 multiplications,	but	multiplication	is	quadratic	in	BGW-
semi-honest	(computing	Shamir	shares	is	𝑂 𝑛=)

Honest	Minority	– OT-Based	Protocol

• Main	observation:	we	only	need	to	multiply	bits and	a	string	by	a	bit
• Two-party	string-bit	multiplication	with	OT:	compute	𝑥 ⋅ 𝑏

String	OT	
(extension)

𝑷𝟏 𝑥 :	 𝑷𝟐 (𝑏)	Choose	random 𝑟
Set	𝑥* = 𝑟;	x+ = 𝑥 ⊕ 𝑟

𝑥*,𝑥+ 𝑏

𝑥:

Output	𝑟 Output	𝑥:

OT-Based	Protocol

• Step	1:	Compute	pairwise	XOR	shares	of	𝜆< ⋅ 𝜆?
• This	is	just	the	XOR	of	products	𝜆<' ⋅ 𝜆?' and	so	can	use	bit-OT	multiplication

• Step	2:	Compute	XOR	shares	of	 𝑎 ⊕𝜆< ⋅ 𝑏 ⊕ 𝜆? ⊕ 𝜆6 for	each	
𝑎, 𝑏 ∈ {0,1} (local	computation	only)
• Step	3:	Compute	XOR	shares	of	𝑅J ⋅ 𝑎 ⊕ 𝜆< ⋅ 𝑏⊕ 𝜆? ⊕ 𝜆6

• This	uses	a	4	string-OT	multiplications	between	each	pair

• Step	4:	XOR	the	result	with	the	PRF	values	and	broadcast

Evaluation

• CREATE	(part	of	DETER):	
• Intel	Xeon	2.20GHz,	6	core,	
• Network	with	0.1ms	ping	time	(≈	0.05ms	latency)

• Amazon	Virginia-Virginia
• c4.8xlarge	instances
• Network	with	1ms	ping	time	(≈	0.5ms	latency)

• Amazon	Virginia-Ireland
• c4.8xlarge	instances
• Network	with	75ms	ping	time	(≈37.5ms	latency)

Evaluation

• Compare	to	GMW	in	[CHKMR12]	on	same	platforms
• Uses	optimized	OT	extensions
• GMW	online	and	offline:	OT	on	random	inputs,	in	online	single-bit	sent	only	
per	AND	gate
• BMR	online	and	offline:	build	circuit	offline,	send	input	and	compute	online

• Run	with:
• AES	circuit:	6800	AND	gates,	depth	=	40
• SHA256	circuit:	90,825	AND	gates,	depth	=	4000
• SHA256*	synthetic:	90,825	AND	gates,	depth=10,	100,	1000

Hypotheses

• GMW	will	win	on	very	shallow	circuits	in	all	networks
• BMR	will	win	on	deep	circuits	in	all	networks
• BMR	will	win	on	not	shallow	circuits	in	slow	networks
• BMR-online	will	beat	GMW-online	except	for	very	shallow	circuits
• BGW-BMR	will	beat	BGW-OT	(but	requires	honest	majority)
• Questions:

• What	is	the	effect	of	the	number	of	parties?
• At	what	circuit-depth	and	network	speed	does	BMR/GMW	win?

Amazon	Virginia-Ireland	 – WAN	(37.5ms	latency)

1

10

100

1000

10000

100000

1000000

3 5 7 9 11 13 15

ms

Number	of	Parties

Online	Time/Parties:	Amazon	Virginia-Ireland,	#AND=91,000

BMR	(d=4000)

GMW	(d=4000)

GMW	(d=1000)

GMW	(d=100)

GMW	(d=10)

0

20000

40000

60000

80000

100000

120000

3 8 13 18 23 28 33

ms

Number	of	Parties

Total	Time/Parties:	Amazon	Virginia,	Depth=4000,	#AND=91,000

OT

BGW3

BGW4

GMW

Amazon	Virginia	– LAN	(0.5ms	latency)

0

500

1000

1500

2000

2500

3000

3 8 13 18 23 28 33

ms

Number	of	Parties

Online	Time/Parties,	Amazon	Virginia,	Depth=4000,	#AND=91,000

BMR GMW

CREATE	– Fast	LAN	(0.05ms	latency)

0

10000

20000

30000

40000

50000

60000

70000

80000

3 8 13 18 23 28 33

ms

Number	of	parties

Total	Time/Parties:	CREATE,	Depth=4000,	#AND=91000

OT

BGW3

BGW4

GMW

0

200

400

600

800

1000

1200

1400

1600

1800

3 8 13 18 23 28 33

ms

Number	of	parties

Online	Time/Parties:	CREATE,	Depth=4000,	#AND=91000

BMR

GMW

CREATE	– Fast	LAN	(0.05ms	latency)

BMR	wins	for	few	parties	only!

Amazon	Virginia	– LAN	(0.5ms	latency)

BGW-BMR	beats	OT-BMR	for	few	parties	only;
GMW	wins	in	total	time,	loses	in	online	time	(small	circuit)	

Amazon	Virginia-Ireland	 – WAN	(37.5ms	latency)

At	depth	100,	GMW	wins	in	total	time	even	in	a	WAN,	
but	is	an	order	of	magnitude	slower	in	online	time

Hypotheses

• GMW	will	win	on	very	shallow	circuits	in	all	networks √
• BMR	will	win	on	deep	circuits	in	all	networks	 X
• BMR	will	win	on	not	shallow	circuits	in	slow	networks X
• BMR-online	will	beat	GMW-online	except	for	very	shallow	circuits X
• BGW-BMR	will	beat	BGW-OT	(but	requires	honest	majority) X
• Questions:

• What	is	the	effect	of	the	number	of	parties?
• At	what	circuit-depth	and	network	speed	does	BMR/GMW	win?

only	for	few	parties

only	for	few	parties	OR	deep	circuits	(in	slow	network)

if	100	is	not	shallow,	then	true	only	for	few	parties	(total	time)

marginal	 in	GMW;	significant	in	BMR

it	depends,	but	GMW	far	better	than	expected

if	deep	is	4000,	then	not	 true	in	very	fast	networks

Constant-Round	 for	Malicious	Adversaries

• The	onlymultiparty	protocol	ever	implemented	for	malicious	
adversaries	is	SPDZ
• In	a	slow	network	with	a	deep	circuit,	this	cannot	perform	well
• Multiparty	TinyOT is	also	concretely efficient,	but	has	many	rounds

• Can	we	use	the	BMR	paradigm	in	this	setting	as	well?

• A	major	obstacle:	forcing	the	parties	to	input	the	correct	PRF	values	is	
inherently	inefficient	(expensive	zero	knowledge)

SPDZ-BMR	[L-Pinkas-Smart-Yanay CRYPTO15]

• Main	idea:	Use	SPDZ	to	compute	the	BMR	garbled	circuit
• Major	obstacle	– proving	correctness	of	PRF	values
• Solution:

• Don’t	force	the	parties	to	input	correct	PRF	values
• We	prove	that	inputting	incorrect	PRF	values	can	only	result	in	abort
• The	only	problem	can	be	if	it	changes	from	one	valid	value	to	another

• Obstacle	2	– need	to	ensure	that	𝜆< values	are	pseudorandom;	coin	
tossing	expensive
• Solution:	SPDZ	provides	coin	tossing	almost	for	free

SPDZ-BMR	[L-Pinkas-Smart-Yanay CRYPTO15]

• Obstacle	3	– need	to	force	consistency	of	𝜆<' values	when	wire	𝑢 is	input	
to	multiple	gates
• Solution:

• Construct	a	single	arithmetic	circuit	for	computing	all	gates	at	once
• Depth	of	circuit	is	constant
• The	main	goal:	reduce	the	number	of	multiplications	in	the	BMR-circuit

SPDZ-BMR

• The	gate	computation	works	as	follows:
• Compute	the	“indicator	variables”

• Multiply	by	the	output	keys:	

• Add	in	the	PRF	masks	and	open:

SPDZ-BMR	Cost

• Size	of	circuit	computing	the	BMR	garbled	circuit
• 13 multiplications	per	AND gate,	and	7multiplications	per	XOR	gate

• Cost	of	computing	the	circuit	using	SPDZ
• For	every	wire,	need	to	generate	𝑛	shared	random	values

• Since	each	gate	requires	essentially	generating	𝑛 ciphertexts
• To	create	a	shared	random	value	each	of	𝑛 parties	needs	to	encrypt	input	
data	(which	must	be	valid)
• Each	of	these	requires	a	ZKPOK,	with	𝑂 𝑛 SHE	encryptions
• Overall	number	of	SHE	multiplications	per	gate:	𝑂 𝑛|

• Very	fast	online	time	– only	2	rounds	and	local	computation

SPDZ-SHE	[L-Smart-Soria-Vazquez	2016]

• Main	idea:	Use	somewhat	homomorphic	encryption	(SHE)	to	directly
compute	the	BMR	garbled	circuit
• Save	the	intermediary	step	of	generating	multiplication	triples

• Major	goal:	reduce	the	depth of	the	circuit	computing	the	BMR	
garbled	circuit
• This	has	significant	influence	over	the	efficiency	since	it	affects	the	size	of	the	
SHE	parameters

• We	achieve	a	quadratic	number	of	multiplications	only	(but	need	an	
SHE	of	depth	3)	

SPDZ-SHE

• A	naïve	approach	yields	a	circuit	of	depth	4:
• Multiply	to	get	indicator	bit	– 2	multiplications	(need	to	square)
• Multiply	indicator	bit	by	keys	– 1	more	multiplication
• An	additional	multiplication	is	needed	(as	in	SPDZ)	to	ensure	correct	output

• Our	aim:	reduce	the	depth	of	the	circuit	run	inside	SHE
• We	construct	equations	multiplying	key	in	directly
• Our	equations	do	not	always	compute	the	correct	key
• Our	equation	always	computes	the	correct	key	or	its	additive	complement

SPDZ-BMR

• A	depth-2	equation	for	the	AND	gate:

• For	example,	if	𝜆9 = 𝜆: = 𝜆} = 0 then	we	get	𝑘},*
• For	example,	if	𝜆9 = 𝜆: = 𝜆} = 1 then	we	get	−𝑘},*
• This	is	a	problem:

• A	party	learns	information	if	it	knows	that	it	received	the	value	or	its	
complement

SPDZ-BMR

• The	solution
• No	party	knows	the	basic	key	values
• The	key	used	to	mask	is	the	square of	these	values

• There	is	additional	cost	since	the	basic	key	values	now	need	to	be	
generated	using	an	SHE	“generate	random”
• Thus,	there	are	more	multiplications	but	the	depth	is	lower

Summary

• The	BMR	paradigm	deserves	more	attention

• Semi-honest	optimizations	are	an	important	first	step
• Improvements	on	the	circuit
• Surprising	results	regarding	the	BGW	vs	OT	approaches

• We	used	SPDZ	and	SHE	to	compute	for	malicious
• What	other	methods	can	be	used?

