

Counting Q²-Maximal Adversary Structures Counting Q²-Maximal Adversary Structures Construction **Idea of Construction** 1. Fix $\mathcal{P} = [n]$ with *n* even, let t = n/2 - 1, and $\mathcal{Z} = \{Z \subseteq \mathcal{P} : |Z| \le t\}$. *n* even, t = n/2 - 1, i.e., t + 1 = n/2all subsets n-set of [*n*] + 2-sets t - es $\beta_1, \beta_2, \beta_3, \dots$ $\hat{\mathcal{Z}}_i = \mathcal{Z} \cup \mathcal{B}_i$ Show that \hat{Z}_i is Q^2 -maximal Counting Q²-Maximal Adversary Structures (continued) Counting Q²-Maximal Adversary Structures (continued) Construction Construction 2. Let $\mathcal{B} = \{B_1, B_2, \dots, B_\ell\} := \{B \subseteq [n-1] : |B| = t+1\}.$ 3. For binary vector \vec{x} of length ℓ , let $\mathcal{B}_{\vec{x}} := \{B'_1, B'_2, \dots, B'_\ell\}, \text{ where } B'_i = \begin{cases} B_i, & \text{if } x_i = 0\\ B_i^c, & \text{if } x_i = 1 \end{cases}$ Claim: $\forall Z \subseteq \mathcal{P}, |Z| = t + 1 : (Z \in \mathcal{B}) \lor (Z^c \in \mathcal{B}).$ Proof: Claim: $\widehat{\mathcal{Z}}_{\vec{x}} := (\mathcal{B}_{\vec{x}} \cup \mathcal{Z})$ is Q^2_{\max} for any \vec{x} . A) If $n \notin Z$, then $Z \in \mathcal{B}$. **Proof of Q²:** Consider $Z_1, Z_2 \in \widehat{Z}_{\vec{X}}$, then ... B) Otherwise, Z^c is a (t+1)-subset of \mathcal{P} with $n \notin Z^c$, hence $Z^c \in \mathcal{B}$. A) $Z_1 \in \mathcal{Z}$ or $Z_2 \in \mathcal{Z}$: $|Z_1| + |Z_2| < n$. Claim: $\widehat{\mathcal{Z}} := (\mathcal{B} \cup \mathcal{Z})$ is Q^2_{\max} . B) $Z_1, Z_2 \in \mathcal{B}_{\vec{X}}$: $\exists i, j : Z_1 = B'_i \land Z_2 = B'_i$ **Proof of Q²:** Consider $Z_1, Z_2 \in \widehat{\mathcal{Z}}$, then ... $i \neq j \Rightarrow B_i \neq B_j \land B_i \neq B_i^c \Rightarrow Z_1 \cup Z_2 \neq \mathcal{P}.$ A) $Z_1 \in \mathcal{Z} \text{ or } Z_2 \in \mathcal{Z}: |Z_1| + |Z_2| \le t + (t+1) < n.$ B) $Z_1, Z_2 \in \mathcal{B}$: $n \notin (Z_1 \cup Z_2)$. **Proof of Maximality:** Consider Z to be appended to $\widehat{\mathcal{Z}}_{\vec{X}'}$ then ... A) $|Z| \leq t$: Z is already contained in $\widehat{\mathcal{Z}}_{\vec{X}}$. **Proof of Maximality:** Consider Z to be appended to $\hat{\mathcal{Z}}$, then ... B) $|Z| \ge t + 2$: Z^c is in \mathcal{Z} , hence $\widehat{\mathcal{Z}}_{\vec{X}} \cup \{Z\}$ violates Q^2 .

A) $|Z| \leq t$: Z is already contained in Z. B) $|Z| \geq t + 2$: Z^c is in Z, hence $\widehat{Z} \cup \{Z\}$ violates Q^2 . C) |Z| = t + 1: Either $Z \in \mathcal{B}$ (contained), or $Z^c \in \mathcal{B}$ (violates Q^2).

Counting Q²-Maximal Adversary Structures (continued)

Analysis

•
$$t = \binom{n-1}{t+1} = \frac{(n-1) \cdot (n-2) \cdot \ldots \cdot (n-t)}{t \cdot (t-1) \cdot \ldots \cdot 1} \ge 2^t = 2^{n/2-1}$$

• There are (at least) $2^{2^{n/2-1}}$ different Q^2 -maximal adversary structures.

Outline

- General Adversaries: The Basics
- \forall constructions \exists adversary structures \mathcal{Z} s.t. $|\pi_{\mathcal{Z}}| \in \mathsf{Exp}(n)$

MPC for Adversary Structures (recap)

- MPC for Delta Structures
- Conclusions

One of them is already in $\widehat{\mathcal{Z}}_{\vec{X}}$, the other would violate Q^2

Proof: Otherwise, there would be secure for $Z_1 \cup Z_2$, which is not Q^2 .

Theorem: \exists adversary structures \mathcal{Z} s.t. $|\pi_{\mathcal{Z}}| \in \text{Exp}(n)$

C) |Z| = t + 1: $\exists i : Z = B_i \lor Z = B_i^c$.

Length of GA MPC Protocols

Proof: There are $2^{2^{n/2-1}}$ different Q^2 -maximal adversary structures, each requiring a different π . Hence, some π have length at least $2^{n/2-1}$.

Corollary: Same holds in the Q^3 and the Q^4 worlds ...

Note: Does not (necessarily) imply exponential communication.

MPC: Ancient View

Security Statement:

What Adv can achieve in Real, she can also achieve in Ideal, while corrupting the same parties.

Limitation: Parties with inputs/outputs \equiv computing parties.

MPC for Delta Structures (cont'ed)

Adding multiple Adversary Set

- Given: $\vec{\pi}$ for \mathcal{P}, \mathcal{Z} and k additional sets $Z_1, \ldots, Z_k \subseteq \mathcal{P}$.
- Goal: Construct $\vec{\pi}'$ for \mathcal{P} , $(\mathcal{Z} \cup_{!} \{Z_1, \ldots, Z_k\})$.

Construction

• Add sets one-by-one (in k steps)

Efficiency: Exp(k) blow-up for k additional sets Z_1, \ldots, Z_k .

Putting Things Together

- + log(| $\Delta \mathcal{Z}|)$ recursion steps for $\Delta \mathcal{Z},$ 2 recursion steps for threshold structure.
- Overall complexity: $Exp(log(|\Delta Z|) + 2) = Poly(|\Delta Z|)$.

Conclusions

What we achieved

- Poly-time protocols for delta-structures
- captures all adversary structures, efficient for "close-to-threshold"

What we missed

• Efficient protocols for delta-structures

What is Open

• Other description languages?