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Motivation I

Threshold [GMW,BGW,CCD,. . . ]

Condition: < half corrupted

General Adversaries [HM,SS,CDM,. . . ]

Condition: seti ∪ setj 6= all parties
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Motivation II

Threshold-Adversary Setting

• Characterization: n, t ∈ N
E.g.: n = 7, t = 3

• Complexity of MPC: Poly(n, t)

General-Adversary Setting

• Characterization: P with |P| = n, Z ⊆ 2P

E.g. P =
{

, , , , , ,
}

,

Z =
{{

, ,
}
,
{

, ,
}
, . . .

}

• Complexity of MPC: Poly(|P|, |Z|) = Exp(n)

However: For “natural” Z, size |Z| ∈ Exp(n)

Motivation III

Summary

• Threshold MPC: Poly(n) [GMW,BGW,CCD,RB,Bea,CDN,. . . ]

• General MPC: Exp(n) [HM,SS,CDM,Mau,HT,. . . ]

Resorts

• Find more efficient GA protocols

⇒ ∀ constructions ∃ adversary structures Z s.t. |πZ | ∈ Exp(n)

• Find constructions s.t. ∀ natural Z: |πZ | ∈ Poly(n)

Formally: Description language L, s.t.

– Completeness: ∀Z ⊆ 2P ∃D ∈ L : D ∼ Z
– Naturalness: “natural” Z have small descriptions D

– Efficiency: ∀D ∈ L ∃πD : |πD| = Poly(n, |D|)
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Today: Delta Structures = Close-to-Threshold Adversary Structures

Outline

• General Adversaries: The Basics

• ∀ constructions ∃ adversary structures Z s.t. |πZ | ∈ Exp(n)

• MPC for Adversary Structures (recap)

• MPC for Delta Structures

• Conclusions

Notation and Results

Notation

• Party set P, |P| = n here: P = [n]

• Monotone adversary structure
?

Adv. chooses one of them

Z = {Z1, Z2, . . . , Z`} ⊆ 2P

(Monotone: Z ∈ Z, Z′ ⊆ Z ⇒ Z′ ∈ Z)

Definitions

• Q2(P,Z) :⇔ ∀Z1, Z2 ∈ Z : Z1 ∪ Z2 6= P (no two sets add up to P)

• Q2
max(P,Z) :⇔ Q2(P,Z) ∧ @Z ′ ) Z : Q2(P,Z ′) (bigger Z ′ are not Q2)

Results Threshold Gen.Adv.

• I.T. passive, crypto. active: t < n/2 Q2(P,Z)

• I.T. active: t < n/3 Q3(P,Z)

• Asynchronous, perfect t < n/4 Q4(P,Z)
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Length of GA MPC Protocols – Roadmap

Lemma: ∀ constructions ∃ adversary structures Z s.t. |πZ | ∈ Exp(n)

Proof Roadmap

1. Count maximal adversary structures for given n (lower bound)

2. Derive length of GA MPC protocols (for some adversary structures)



Counting Q2-Maximal Adversary Structures

Idea of Construction

n even, t = n/2− 1, i.e., t + 1 = n/2

all subsets
of [n]
BBBBBBBBBBBBBBBB

1-sets
2-sets
· · ·
t-sets

t + 1-sets
t + 2-sets

· · ·

n-set

Z

B1,B2,B3, . . .

Ẑi = Z ∪ Bi
Show that Ẑi is Q2-maximal

Counting Q2-Maximal Adversary Structures

Construction

1. Fix P = [n] with n even, let t = n/2− 1, and Z = {Z ⊆ P : |Z| ≤ t}.

Counting Q2-Maximal Adversary Structures (continued)

Construction

2. Let B = {B1, B2, . . . , B`} := {B ⊆ [n − 1] : |B| = t + 1}.

Claim: ∀Z ⊆ P, |Z| = t + 1 : (Z ∈ B) ∨ (Zc ∈ B).

Proof:

A) If n /∈ Z, then Z ∈ B.

B) Otherwise, Zc is a (t+1)-subset of P with n /∈ Zc , hence Zc ∈ B.

Claim: Ẑ := (B ∪ Z) is Q2
max.

Proof of Q2: Consider Z1, Z2 ∈ Ẑ, then . . .

A) Z1 ∈ Z or Z2 ∈ Z: |Z1|+ |Z2| ≤ t + (t + 1) < n.

B) Z1, Z2 ∈ B: n /∈ (Z1 ∪ Z2).

Proof of Maximality: Consider Z to be appended to Ẑ, then . . .

A) |Z| ≤ t: Z is already contained in Z.

B) |Z| ≥ t + 2: Zc is in Z, hence Ẑ ∪ {Z} violates Q2.

C) |Z| = t + 1: Either Z ∈ B (contained), or Zc ∈ B (violates Q2).

Counting Q2-Maximal Adversary Structures (continued)

Construction

3. For binary vector ~x of length `, let

B~x := {B′1, B′2, . . . , B′`}, where B′i =

{
Bi , if xi = 0
Bci , if xi = 1

Claim: Ẑ~x := (B~x ∪ Z) is Q2
max for any ~x .

Proof of Q2: Consider Z1, Z2 ∈ Ẑ~x , then . . .

A) Z1 ∈ Z or Z2 ∈ Z: |Z1|+ |Z2| < n.

B) Z1, Z2 ∈ B~x : ∃i , j : Z1 = B′i ∧ Z2 = B′j
i 6= j ⇒ Bi 6= Bj ∧ Bi 6= Bcj ⇒ Z1 ∪ Z2 6= P.

Proof of Maximality: Consider Z to be appended to Ẑ~x , then . . .

A) |Z| ≤ t: Z is already contained in Ẑ~x .

B) |Z| ≥ t + 2: Zc is in Z, hence Ẑ~x ∪ {Z} violates Q2.

C) |Z| = t + 1: ∃i : Z = Bi ∨ Z = Bci .

One of them is already in Ẑ~x , the other would violate Q2.

Counting Q2-Maximal Adversary Structures (continued)

Analysis

• ` =
(
n−1
t+1

)
=

(n − 1) · (n − 2) · . . . · (n − t)

t · (t − 1) · . . . · 1
≥ 2t = 2n/2− 1

• There are (at least) 22n/2−1 different Q2-maximal adversary structures.

Length of GA MPC Protocols

Lemma: Let Z1 6= Z2 be Q2-maximal adversary structures (for some P).
Then πZ1 6= πZ2

Proof: Otherwise, there would be secure for Z1 ∪Z2, which is not Q2.

Theorem: ∃ adversary structures Z s.t. |πZ | ∈ Exp(n)

Proof: There are 22n/2−1 differentQ2-maximal adversary structures, each

requiring a different π. Hence, some π have length at least 2n/2−1.

Corollary: Same holds in the Q3 and the Q4 worlds . . .

Note: Does not (necessarily) imply exponential communication.
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MPC: Ancient View

MPC⇒
Ideal World Real World

Security Statement:

What Adv can achieve in Real, she can also achieve in Ideal,
while corrupting the same parties.

Limitation: Parties with inputs/outputs ≡ computing parties.



MPC: Classic View

MPC⇒
Ideal World Real World

Security Statement

What Adv can achieve in Real, she can also achieve in Ideal,
while corrupting the same users (and never ).

Limitations

• Implicit assumption: Ideal is “good” if and only if is honest.

• Guarantees only if few enough players are corrupted → example.

MPC: Modern View

P

Z

MPC⇒
P ′

Z′

Ideal World Prot. ~π Real World Prot. ~π′

Security Statement

What Adv can achieve in ~π′, she can also achieve in ~π,
while corrupting Z = Z′ ∩ P.

Additional Security Requirement

• Too much cheating → is dishonest (but not worse).

• Achieved by [BGW], and probably all others . . .

MPC: Player Simulation

P,Z

Pk MPC⇒
P ′,Z ′

P̃

Protocol ~π

Z̃

Protocol ~π′

Deriving Adversary Structure

• Assume: ~π (for P) is “good” when attacked by some Adv in Z.

• Simulate Pk ∈ P with an MPC protocol among P̃ secure against Z̃.

• Then P ′ = (P \ {Pk}) ∪ P̃, and

Z ′ =

{
Z′ ⊆ P ′

∣∣∣∣ (Z′ ∪ {Pk}) ∩ P ∈ Z ∨
(Z′ \ {Pk}) ∩ P ∈ Z ∧ (Z′ ∩ P̃) ∈ Z̃

}

MPC for General Adversary Structures [HM]

Given

• Threshold 3-PC Protocol secure for Player Simulation ([BGW] does the job)

• Target P,Z with Q2(P,Z) (to be constructed).

Construction

A) |Z| ≤ 2: There is a trusted party ∃Pj ∈ P.

B) If |Z| ≥ 3:

1. Partition Z into Z1,Z2,Z3 of similar size.

2. Construct MPC protocols ~πi for each Zci = Z \ Zi . (recursion)

3. Let ~π1, ~π2, ~π3 run threshold MPC with n = 3, t = 1.

Analysis

• Every Z ∈ Z is contained in two Zci
→ these parties behave honestly in threshold MPC → honest majority.

• Efficiency: Exp(recursion depth) = Exp(log(|Z|)) = Poly(|Z|).
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Delta Structures

Intuition

• Given P, all sets Z ⊆ P with |Z| < |P|/2 are tolerated “for free”.

• Specify delta structure ∆Z with additional (larger) sets Z.

• Automatically “removes” incompatible small sets Z.

Definitions

• Delta Structure ∆Z = {Z1, Z2, . . . , Z`} ⊆ 2P (usually not monotone)

• Monotone Closure 〈∆Z〉 := {Z⊆P | ∃Z′∈ ∆Z : Z ⊆ Z′} (include subsets)

• Enforced add Z1 ∪! Z2 := {Z ∈ Z1 | Zc /∈ Z2} ∪ Z2

• Induced structure ∆∗Z := {Z ∈ P : |Z| < |P|/2} ∪! 〈∆Z〉

Security

• Secure against delta structure ∆Z :≡ secure against adversary structure ∆∗Z.

MPC for Delta Structures

Given

• Threshold n-PC Protocol secure for Player Simulation ([BGW] does the job).

• Target (P,∆Z) with Q2(P, 〈∆Z〉) (to be constructed).

Construction

A) |∆Z| ≤ 2: See next slides.

B) If |∆Z| ≥ 3:

1. Partition ∆Z into ∆Z1,∆Z2,∆Z3 of similar size.

2. Construct MPC protocols ~πi for each ∆Zci = ∆Z \ ∆Zi .
3. Let ~π1, ~π2, ~π3 run threshold MPC with n = 3, t = 1.

Analysis

• Every Z ∈ ∆∗Z is contained in two ∆∗Zci → honest majority.

• Efficiency: Exp(recursion depth) = Exp(log(|∆Z|)) = Poly(|∆Z|).

MPC for Delta Structures (cont’ed)

Adding one Adversary Set

• Given: ~π for P,Z (with Q2(P,Z)), and an additional set Z1 ⊆ P.

• Goal: Construct ~π′ for P, (Z ∪! {Z1}).

Construction

1. P = {P1, P2, . . . , Pn}, k = |Zc1 | (#honest parties in Z1).

2. Let ~π′ = ~π, where each Pi ∈ P

?

Z1 is sufficient

is simulated by a threshold protocol among

Pi = Zc1︸︷︷︸
k parties

∪ { P 1
i , . . . , P

k−1
i︸ ︷︷ ︸

k − 1 copies of Pi

}, tolerating k − 1 corruptions.

Lemma: The above construction is secure against (Z ∪! {Z1})

Proof: Consider Z ∈ (Z ∪! {Z1}):

A) Z ∈ Z, Z ∪ Z1 6= P: The simulations of honest Pi ’s have honest majority.

B) Z = Z1: All Pi ∈ Z are correctly simulated!

Efficiency: Poly(n) blow-up for one additional set Z1.



MPC for Delta Structures (cont’ed)

Adding multiple Adversary Set

• Given: ~π for P,Z and k additional sets Z1, . . . Zk ⊆ P.

• Goal: Construct ~π′ for P, (Z ∪! {Z1, . . . , Zk}).

Construction

• Add sets one-by-one (in k steps)

Efficiency: Exp(k) blow-up for k additional sets Z1, . . . , Zk .

Putting Things Together

• log(|∆Z|) recursion steps for ∆Z, 2 recursion steps for threshold structure.

• Overall complexity: Exp(log(|∆Z|) + 2) = Poly(|∆Z|).

Conclusions

What we achieved

• Poly-time protocols for delta-structures

• captures all adversary structures, efficient for “close-to-threshold”

What we missed

• Efficient protocols for delta-structures

What is Open

• Other description languages?


