
Privacy-Preserving	
Outsourcing	by	Distributed	
Verifiable	Computation
Meilof	Veeningen
Philips	Research
MPC	2016,	Aarhus,	May	30	2016

Philips	Research2

Philips	Research3

Philips	Research4

Philips	Research5

Philips	Research6

Outsourcing	Computations	on	Sensitive	Data	(I)

Philips	Research7

x f(x)
privacy? correctness?

Outsourcing	Computations	on	Sensitive	Data	(I)

Philips	Research8

𝑥 " 𝑥 #𝑥 $

secure	multiparty	computation

𝑓(𝑥) $
𝑓(𝑥) #𝑓(𝑥) "

Jakobsen,	Nielsen,
Orlandi (CCSW	’14):

privacy	and	correctness
with	𝑛 − 1 actively
corrupted	workers

Can	we	achieve	correctness	even
if	all	workers	are	corrupted?

Outsourcing	&	Correctness	(But	No	Privacy)

Philips	Research9

Privacy	+	Correctness:	A	Generic	Construction

Philips	Research10

𝑥 " 𝑥 #𝑥 $

𝑦 = 𝑓(𝑥) $
𝑦 = 𝑓(𝑥) #𝑦 = 𝑓(𝑥) "𝑦,Proof(𝑦= 𝑓 𝑥) $
𝑦, Proof(𝑦 = 𝑓 𝑥) #𝑦, Proof(𝑦 = 𝑓 𝑥) "

Question:	can	we	efficiently
construct	these	proofs with
multi-party	computation?

Privacy: same	as	MPC
protocol	used

Correctness: always!

Privacy	+	Correctness:	Previous	Work

Philips	Research11

openings

Publicly	Auditable SPDZ
(Baum/Damgård/Orlandi)

Preprocessing

𝑥 , 𝑦 , 𝑥𝑦
+𝑔3, 𝑔4 , 𝑔34

Universally	Verifiable	CDN
(de	Hoogh/Schoenmakers/V.)

ZK

NIZK

Certificate	Validation	…
(de	Hoogh/Schoenmakers/V.)

Paillier

ElGamal

Verification	effort	scales	in	computation	size!
Reason:	existing	work	takes	MPC	as	starting	point!

Privacy	+	Correctness:	Previous	Work

Philips	Research12

• Instead	of	 𝑦, Proof(𝑦 = 𝑓 𝑥) ":
– Baum/Damgård/Orlandi: SPDZ	+	Pedersen	commitments	=	SPDZ’
– de	Hoogh/Schoenmakers/Veeningen:	CDN	+	non-interactive	proofs	=	CDN’
– de	Hoogh/Schoenmakers/Veeningen:	CDN’	+	ElGamal encryption	=	CDN’’

• Because	of	MPC	starting	point,	no	efficient	verification!

Today:	 𝑦, Proof(𝑦 = 𝑓 𝑥) can	be	efficient!

Philips	Research13

𝑥 " 𝑥 #𝑥 $

𝑦, PinocchioVC(𝑦 = 𝑓 𝑥) $

𝑦, PinocchioVC(𝑦 = 𝑓 𝑥) #

𝑦, PinocchioVC(𝑦 = 𝑓 𝑥) "

Theorem. (Schoenmakers/V/de
Vreede,	ACNS	‘16)	Privacy-preserving
computation	of	Pinocchio	VC:	three
workers	each	perform	essentially	the
work of	the	original	prover.

Corollary. Verifiable	Multi-Party
Computation	with	constant-time
verification!

Outline

• Secret	sharing	MPC
• Pinocchio	VC

• Secret	sharing	MPC	+	Pinocchio	VC

Philips	Research14

Philips	Research15

Secret	sharing	MPC

Shamir	secret	sharing	(2-out-of-3)

Philips	Research16

(3,𝑦< + 𝑧<)

(2,𝑦@ + 𝑧@)

(1,𝑦A + 𝑧A)

𝑠$ + 𝑠"

0

𝑠$

𝑦A

𝑦@

𝑦<

1 2 3

𝑠"

(1,𝑦A)

(2,𝑦@)

(3, 𝑦<)

(1, 𝑧A)

(2, 𝑧@)

(3, 𝑧<)

(1,𝑦A𝑧A)

(2,𝑦@𝑧@)

(3,𝑦<𝑧<)

𝛼𝑠$

(1,𝛼𝑦D)

(2,𝛼𝑦E)

(3,𝛼𝑦F)

𝑦 = 𝑎𝑥 + 𝑠$ 𝑏𝑥 + 𝑠" = 𝑎𝑏 𝑥" + 𝑎𝑠" + 𝑏𝑠$ 𝑥 + 𝑠$𝑠"
	s$s" = 3(𝑦D𝑧D) − 3(𝑦E𝑧E) + (𝑦F𝑧F) (3-out-of-3	sharing!)

Animation:	Sebastiaan	de	Hoogh

, 𝑠𝑡(𝑠 + 𝑡)

𝑠𝑡(𝑠 + 𝑡) $

𝑠𝑡(𝑠 + 𝑡) "

𝑠𝑡(𝑠 + 𝑡) #

𝑠𝑡(𝑠 + 𝑡) $

𝑠𝑡(𝑠 + 𝑡) "

𝑠𝑡(𝑠 + 𝑡) #

𝑠 + 𝑡 $

𝑠 + 𝑡 "

𝑠 + 𝑡 #

𝑠𝑡 $

𝑠𝑡 "

𝑠𝑡 #

𝑠𝑡 # "

𝑠𝑡 # $

𝑠𝑡 " $ 𝑠𝑡 " $

𝑠𝑡 $ "

𝑠𝑡 $ #
𝑠𝑡 $

𝑠𝑡 "

𝑠𝑡 #

𝑠 $, 𝑡 $

𝑠 ", 𝑡 "

𝑠 #, 𝑡 #

𝑠 $, 𝑡 $

𝑠 ", 𝑡 "

𝑠 #, 𝑡 #

Goal:	compute	𝑦 = 𝑠 ⋅ 𝑡 ⋅ (𝑠 + 𝑡)

𝑥 :	2-out-of-3	sharing	of	𝑥
𝑥 :	3-out-of-3	sharing	of	𝑥

𝑠, 𝑡Philips	Research17

MPC	based	on	Shamir	secret	sharing

𝑠𝑡 = 3 𝑠𝑡 $ − 3 𝑠𝑡 " + 𝑠𝑡 #
𝑠𝑡 M = 3 𝑠𝑡 $ M − 3 𝑠𝑡 " M + 𝑠𝑡 # M

Philips	Research18

Pinocchio	VC

Pinocchio:	Quadratic	Arithmetic	Programs

Prove	that	committed	 �⃗� satisfies	 equations

𝑉 ⋅ �⃗� ∗ 𝑊 ⋅ �⃗� = (𝑌 ⋅ �⃗�)

Example: 𝑦 = 𝑠 ⋅ 𝑡 ⋅ 𝑠 + 𝑡 if	and	only	if:

∃𝑧 ∶ 	 U
𝑠 ⋅ 𝑡 = 𝑧
𝑧 ⋅ (𝑠 + 𝑡) = 𝑦	

1 0 0 0
0 0 1 0 ⋅

𝑠
𝑡
𝑧
𝑦

∗ 0 1 0 0
1 1 0 0 ⋅

𝑠
𝑡
𝑧
𝑦

= 0 0 1 0
0 0 0 1 ⋅

𝑠
𝑡
𝑧
𝑦

E.g.:	 𝑠	𝑡	𝑦	𝑧 = 3	2	6	30 is	a	solution

Philips	Research19

“quadratic
arithmetic
program”
(QAP)

Pinocchio:	From	QAP	to	SNARK	(I)

Philips	Research20

Prove	that	committed	𝑥 satisfies	equations	 𝑉 ⋅ 𝑥 ∗ 𝑊 ⋅ 𝑥 = 𝑌 ⋅ 𝑥 .

Define	𝑉M 𝜉 ,𝑊M 𝜉 , 𝑌M 𝜉 by	“columnwise Lagrange	interpolation”

1 0 0 0
0 0 1 0 ⋅

𝑠
𝑡
𝑧
𝑦

∗ 0 1 0 0
1 1 0 0 ⋅

𝑠
𝑡
𝑧
𝑦

= 0 0 1 0
0 0 0 1 ⋅

𝑠
𝑡
𝑧
𝑦

𝑉$ 1 = 1, 𝑉$ 2 = 0
𝑉$ 𝜉 = 2 − 𝜉

𝑊" 1 = 1, 𝑊" 2 = 1
𝑊" 𝜉 = 1

…

value	
at	1
value	
at	2

Consider	polynomial	𝑃3⃗ 𝜉 = 𝑉$ 𝜉 𝑠+ 𝑉" 𝜉 𝑡 +⋯ ⋅ 𝑊$ 𝜉 𝑠+⋯ − 𝑌$ 𝜉 𝑠 + ⋯ :

• In	𝜉 = 1:	𝑃3⃗ 1 = 𝑉$ 1 𝑠+ 𝑉" 1 𝑡 + ⋯ ⋅ 𝑊$ 1 𝑠 +⋯ − 𝑌$ 1 𝑠 +⋯ = 𝑠 ⋅ 𝑡 − 𝑧
• In	𝜉 = 2:	𝑃3⃗ 2 = 𝑉$ 1 𝑠+ 𝑉" 1 𝑡 + ⋯ ⋅ 𝑊$ 1 𝑠 +⋯ − 𝑌$ 1 𝑠 +⋯ = 𝑧 ⋅ 𝑠 + 𝑡 − 𝑦

So	 𝑉 ⋅ 𝑥 ∗ 𝑊 ⋅ 𝑥 = 𝑌 ⋅ 𝑥
if	and	only	if	𝑃3⃗ 1 = 𝑃3⃗ 2 = 0
if	and	only	if 𝜉 − 1 ⋅ 𝜉 − 2 		|		𝑃 𝜉
if	and	only	if there	exists	ℎ 𝜉 : 𝜉 − 1 ⋅ 𝜉 − 2 ⋅ ℎ 𝜉 = 𝑃3⃗ 𝜉

Pinocchio:	From	QAP	to	SNARK	(II)

Philips	Research21

Example.

1 0 0 0
0 0 1 0 ⋅

𝑠
𝑡
𝑧
𝑦

∗ 0 1 0 0
1 1 0 0 ⋅

𝑠
𝑡
𝑧
𝑦

= 0 0 1 0
0 0 0 1 ⋅

𝑠
𝑡
𝑧
𝑦

𝑉$ 𝜉 = 𝑌# 𝜉 = 2 − 	𝜉
𝑉" 𝜉 = 𝑉 𝜉 = 𝑊# 𝜉 = 𝑊 𝜉 = 𝑌$ 𝜉 = 𝑌" 𝜉 = 0
𝑉# 𝜉 = 𝑊$ 𝜉 = 𝑌 𝜉 = 𝜉 − 1	
𝑊" 𝜉 = 1

value	
at	1
value	
at	2

Claim:	 𝑠	𝑡	𝑧	𝑦 is	solution	 iff there	exists	ℎ 𝜉 such	that	

𝜉 − 1 𝜉 − 2 ℎ 𝜉 = 𝑠𝑉$ 𝜉 + 𝑡𝑉" 𝜉 + 𝑧𝑉# 𝜉 + 𝑦𝑉 𝜉 ⋅
𝑠𝑊$ 𝜉 + 𝑡𝑊" 𝜉 + 𝑧𝑊# 𝜉 + 𝑦𝑊 𝜉 − 𝑠𝑌$ 𝜉 + 𝑡𝑌" 𝜉 + 𝑧𝑌# 𝜉 + 𝑦𝑌 𝜉

Claim:	 3	2	6	30 is	solution	 iff there	exists	ℎ 𝜉 such	that	

𝜉 − 1 𝜉 − 2 ℎ 𝜉 = 3𝑉$ 𝜉 + 2𝑉" 𝜉 + 6𝑉# 𝜉 + 30𝑉 𝜉 ⋅
3𝑊$ 𝜉 + 2𝑊" 𝜉 + 6𝑊# 𝜉 + 30𝑊 𝜉 − 3𝑌$ 𝜉 + 2𝑌" 𝜉 + 6𝑌# 𝜉 + 30𝑌 𝜉

Claim:	 3	2	6	30 is	solution	 iff there	exists	ℎ 𝜉 such	that	

𝜉 − 1 𝜉 − 2 ℎ 𝜉 = 3𝜉 ⋅ 3𝜉 − 1 − 24𝜉 − 18

Claim:	 3	2	6	30 is	solution	 iff there	exists	ℎ 𝜉 such	that	

𝜉 − 1 𝜉 − 2 ℎ 𝜉 = 9𝜉" − 27𝜉 + 18

Pinocchio:	From	QAP	to	SNARK	(III)

Lemma	⇒ 3	2	6	30 is	solution	 iff there	exists	ℎ 𝜉 such	that	

𝜉 − 1 𝜉 − 2 ℎ 𝜉 = 9𝜉" − 27𝜉 + 18

Philips	Research22

9𝜉" − 27𝜉 + 18𝜉" − 3𝜉 + 2
9	(𝜉" − 3𝜉 + 2)

9

0
−

ℎ 𝜉 = 9

Pinocchio:	From	QAP	to	SNARK	(IV)

Philips	Research23

verification	key:
𝑔 fg$ ⋅…⋅ fgh

prover:
𝑔i f

prover/verifier:
𝑔jk f 3kl⋯

prover/verifier:
𝑔mk f 3kl⋯

prover/verifier:
𝑔nk f 3kl⋯

evaluation	key:
𝑔, 𝑔f, 𝑔fo ,…

evaluation/verification	 	key:
𝑔jp(f),𝑔mp(f), 𝑔np (f)

𝑒
𝑔r
𝑔s 𝑒 𝑔r,𝑔s = 𝑒(𝑔t, 𝑔h)

iff
𝑎 ⋅ 𝑏 = 𝑐 ⋅ 𝑑

𝑒
𝑔t
𝑔h

Magic	crypto	tool:	pairing

verifier: 𝑒 𝑔 fg$ ⋅…⋅ fgh ,𝑔i f = 𝑒 𝑔jk f 3kl⋯,𝑔mk f 3kl⋯ ⋅ 𝑒 𝑔nk f 3kl⋯,𝑔
g$	

?

Ξ − 1 ⋅ … ⋅ Ξ − 𝑑 ⋅ ℎ Ξ = 𝑉$ Ξ 𝑥$ +⋯ ⋅ 𝑊$ Ξ 𝑥$ + ⋯ − 𝑌$ Ξ 𝑥$ +⋯ ⋅ 1𝜉 − 1 ⋅ … ⋅ 𝜉 − 𝑑 ⋅ ℎ 𝜉 = 𝑉$ 𝜉 𝑥$ +⋯ ⋅ 𝑊$ 𝜉 𝑥$ + ⋯ − 𝑌$ 𝜉 𝑥$ + ⋯ ⋅ 1	

Ξ:	random,
unknown

Prove:

Pinocchio:	From	QAP	to	SNARK	(V)

Philips	Research24

𝑠, 𝑡

- evaluate	function:	get	𝑧, 𝑦
- compute	𝑔jx f y, 𝑔mx f y, 𝑔nx f y

- compute	ℎ 𝜉 = j z m z gn z
zg$ ⋅…⋅(zgh)

- compute	𝑔i f

verify:	
𝑒 𝑔 fg$ ⋅…⋅ fgh , 𝑔i f

				= 𝑒(𝑔jk f {ljo f |lj} f 4 ⋅ 𝑔jx f y,
𝑔mk f {lmo f |lm} f 4 ⋅ 𝑔mx f y) ⋅

𝑒 𝑔nk f {lno f |ln} f 4 ⋅ 𝑔nx f y,𝑔
g$	

𝑦, 𝑔i f , 𝑔jx f y,𝑔mx f y, 𝑔nx f y

evaluation	key:
𝑔, 𝑔f, 𝑔fo ,…
𝑔jx f ,𝑔mx f , 𝑔nx f

verification	key:
𝑔 fg$ ⋅…⋅ fgh

𝑔jk f ,𝑔mk f ,𝑔nk f

𝑔jo f ,𝑔mo f ,𝑔no f

𝑔j} f , 𝑔m} f , 𝑔n} f

Philips	Research25

Pinocchio	VCSecret	sharing	MPC

+

Trinocchio:	Distributing	the	Pinocchio	System	(I)

Philips	Research26

- evaluate	function:	get	𝑧, 𝑦
- compute	𝑔jx f y, 𝑔mx f y, 𝑔nx f y

- compute	ℎ 𝜉 = j z m z gn z
zg$ ⋅…⋅(zgh)

- compute	𝑔i f

𝑠, 𝑡 𝑦, 𝑔i f , 𝑔jx f y,𝑔mx f y, 𝑔nx f y𝑠 , 𝑡 𝑦 , 𝑔i f , 𝑔jx f y , 𝑔mx f y , 𝑔nx f y	

Trinocchio:	Distributing	the	Pinocchio	System	(II)

Philips	Research27

prove 𝑔,𝑔f, 𝑔fo ,… ,𝑔jx f ,𝑔mx f ,	𝑔nx f ,𝑠, 𝑡 :

𝑧, 𝑦 = 𝑓(𝑠, 𝑡)

𝑔jx f y = exp	(𝑔jx f ,𝑧)

𝑔mx f y = exp	(𝑔mx f ,𝑧)

𝑔nx f y = exp(𝑔nx f ,𝑧) 	

𝑛 𝜉 = 𝑉$ 𝜉 𝑠+ 𝑉" 𝜉 𝑡 + 𝑉# 𝜉 𝑧 + 𝑉 𝜉 𝑦 ∗ 𝑊$ 𝜉 𝑠 +⋯ − 𝑌$ 𝜉 𝑠 + ⋯

ℎ 𝜉 = � z
zg$ ⋅…⋅ zgh

𝑔i f = exp 𝑔, ℎ� ⋅ exp 𝑔f,ℎ$ ⋅ … ⋅ exp	(𝑔f��k ,ℎhg$)	

return		𝑦, 𝑔i f ,	𝑔jx f y,𝑔mx f y,	𝑔nx f y

Trinocchio:	Distributing	the	Pinocchio	System	(II)

Philips	Research28

return	 𝑦 , 𝑔i f , 𝑔jx f y , 𝑔mx f y , 𝑔nx f yreturn		𝑦, 𝑔i f ,	𝑔jx f y,𝑔mx f y,	𝑔nx f y

𝑔i f = exp 𝑔, ℎ� ⋅ exp 𝑔f, ℎ$ ⋅ … ⋅ exp	(𝑔f��k , ℎhg$)𝑔i f = exp 𝑔, ℎ� ⋅ exp 𝑔f,ℎ$ ⋅ … ⋅ exp	(𝑔f��k ,ℎhg$)	

ℎ 𝜉 = � z
zg$ ⋅…⋅ zgh

	ℎ 𝜉 = � z
zg$ ⋅…⋅ zgh

	

Products	of	2-out-of-3	shares
give	3-out-of-3	shares

𝑛 𝜉 = 𝑉$ 𝜉 𝑠 + 𝑉" 𝜉 𝑡 + 𝑉# 𝜉 𝑧 + 𝑉 𝜉 𝑦 ∗ 𝑊$ 𝜉 𝑠 +⋯
− 𝑌$ 𝜉 𝑠 +⋯

𝑛 𝜉 = 𝑉$ 𝜉 𝑠 + 𝑉" 𝜉 𝑡 + 𝑉# 𝜉 𝑧 + 𝑉 𝜉 𝑦 ∗ 𝑊$ 𝜉 𝑠 + ⋯ − 𝑌$ 𝜉 𝑠+ ⋯ 	

𝑔nx f y = exp(𝑔nx f , 𝑧)

𝑔mx f y = exp	(𝑔mx f , 𝑧)

𝑔jx f y = exp	(𝑔jx f , 𝑧)

𝑔nx f y = exp(𝑔nx f ,𝑧) 	

𝑔mx f y = exp	(𝑔mx f ,𝑧)	

𝑔jx f y = exp	(𝑔jx f ,𝑧)

MPC	computation	of	𝑓 gives
internal	wire	values	“for	free”

𝑧 , 𝑦 = 𝑓(𝑠 , 𝑡)𝑧, 𝑦 = 𝑓(𝑠, 𝑡)

prove 𝑔,𝑔f, 𝑔fo ,… ,𝑔jx f ,𝑔mx f ,	𝑔nx f , 𝑠 , 𝑡 	 :prove 𝑔, 𝑔f, 𝑔fo, … ,𝑔jx f ,𝑔mx f ,	𝑔nx f ,𝑠, 𝑡 :

Division	by	public
polynomial	is	linear!

Shamir	reconstruction
“in	the	exponent”

Only	step in	which
the	workers
communicate!

Trinocchio:	Distributing	the	Pinocchio	System	(III)

Philips	Research29

𝑦 , 𝜋

�⃗�

�⃗�

�⃗�

𝑠 , 𝑡
Theorem. Privacy-preserving
computation	of	Pinocchio	VC:	three
workers	each	perform	essentially	the
work	of	the	original	prover.

275	s

275	s

275	s

6427	s

6427	s

6427	s

0.05	s

Extensions	/	Future	Directions

Philips	Research30

𝑋 ⋅ 𝑅 = 1

𝑋 = 𝐵$ + 2𝐵" +
…+2�𝐵�

1 = 𝐵$ ⋅ 1− 𝐵$
…
1 = 𝐵� ⋅ 1− 𝐵�

QAP MPC

nonzero
test

positivity
test

𝑈 ∈� ℱ
𝑉 = 𝑂𝑝𝑒𝑛(𝑋𝑈)
𝑅 = 𝑉g$	 𝑈

𝐵$,… , 𝐵$ =
𝐵𝑖𝑡𝐷𝑒𝑐(𝑋)

…

• Multiple	 inputters

• Auditable	MPC

• Verifiability	by	certificate	validation

• QAPs	+	MPC	for	particular	tasks?
– Zero	testing
– Comparison
– …

• Easily	programmable	distributed
verifiable	computation

