Privacy-Preserving Outsourcing by Distributed Verifiable Computation

Meilof Veeningen
Philips Research
MPC 2016, Aarhus, May 302016

The HealthSuite digital platform represents a new era in connected health and care for both patients and providers, as healthcare continues to move outside the hospital walls, and into our homes and everyday lives.

HealthSuite is an open, cloud-based platform that collects, compiles and analyzes clinical and other data from a wide range of devices and sources.

Applications can be built with HealthSuite for health systems, care providers and individuals to access data on personal health, specific patient conditions and entire populations - so care can be more personalized and people more empowered in their own health, wellbeing and lifestyle.

Connecting solutions from the hospital to the home and everywhere in between, we can enable a value-based path to healthier living and wellbeing, throughout the health continuum.

Be the first to know about our latest innovations from the Health suite digital platform and upcoming hackathons.

Outsourcing Computations on Sensitive Data (I)

Outsourcing Computations on Sensitive Data (I)

Can we achieve correctness even if all workers are corrupted?
privacy and correctness with $n-1$ actively corrupted workers

Outsourcing \& Correctness (But No Privacy)

Pinocchio: Nearly Practical Verifiable Computation

Bryan Parno
Jon Howell
Microsoft Research

Craig Gentry
Mariana Raykova
IBM Research

Abstract

Computing [9-11] or other secure hardware [12-15] assume

To instill greater confidence in c the cloud, clients should be abl of the results returned. To this chio, a built system for efficiently tions while relying only on crypto Pinocchio, the client creates a pt scribe her computation; this setu ating the computation once. The computation on a particular input

Compared with previous work, Pinocchio improves verification time by 5-7 orders of magnitude and requires less than 10 ms in most configurations, enabling it to beat native C execution for some apps. We also improve the worker's proof efforts by $19-60 \times$ relative to prior work. The resulting proof is tiny, 288 bytes (only slightly more than an RSA-2048 signature), regardless of the computation. Making a proof zeroknowledge is also cheap, adding negligible overhead ($213 \mu \mathrm{~s}$ to key generation and 0.1% to proof generation). e defeated. Finally, the theumber of beautiful, generalfer compelling asymptotics. rely on complex Probabilis[17] or fully-homomorphic ormance is unacceptable ake hundreds to trillions of 25-28] has improved these ncy is still problematic, and nublic verification. In contrast, we describe Pinocchio, a concrete system for efficiently verifying general computations while making only cryptographic assumptions. In particular, Pinocchio supports public verifiable computation [22, 29], which allows an untrusted worker to produce signatures of computation. Initially, the client chooses a function and generates a public

Privacy + Correctness: A Generic Construction

Privacy + Correctness: Previous Work

Publicly Auditable SPDZ

(Baum/Damgård/Orlandi)

Verification effort scales in computation size!
Reason: existing work takes MPC as starting point!

Privacy + Correctness: Previous Work

- Instead of $\llbracket y, \operatorname{Proof}(y=f(x)) \rrbracket_{2}$:
- Baum/Damgård/Orlandi: SPDZ + Pedersen commitments = SPDZ'
- de Hoogh/Schoenmakers/Veeningen: CDN + non-interactive proofs = CDN'
- de Hoogh/Schoenmakers/Veeningen: CDN' + ElGamal encryption = CDN"
- Because of MPC starting point, no efficient verification!

Today: $\llbracket y, \operatorname{Proof}(y=f(x)) \rrbracket$ can be efficient!

Outline

- Secret sharing MPC
- Pinocchio VC
- Secret sharing MPC + Pinocchio VC

Secret sharing MPC

Shamir secret sharing (2-out-of-3)

MPC based on Shamir secret sharing

Goal: compute $y=s \cdot t \cdot(s+t)$
$\llbracket s \rrbracket_{2}, \llbracket t \rrbracket_{2}$
$[s t]_{2}$
$\llbracket s t \rrbracket_{2}$
$\llbracket s+t \rrbracket_{2}$
$\llbracket s t(s+t) \rrbracket_{2}$
$\llbracket s \rrbracket_{1}, \llbracket t \rrbracket_{1}$ $[s t]_{1}$ $\llbracket s t \rrbracket_{1}$ $\llbracket s+t \rrbracket_{1}$ $\llbracket s t(s+t) \rrbracket_{1}$
$\llbracket x \rrbracket$: 2-out-of-3 sharing of x
[x]:3-out-of-3 sharing of x
$\llbracket s \rrbracket_{3}, \llbracket t \rrbracket_{3}$ $[s t]_{3}$
$\llbracket s t \rrbracket_{3}$
$\llbracket s+t \rrbracket_{3}$
$\llbracket s t(s+t) \rrbracket_{3}$

Pinocchio VC

Pinocchio: Quadratic Arithmetic Programs

Prove that committed \vec{x} satisfies equations

$$
(V \cdot \vec{x}) *(W \cdot \vec{x})=(Y \cdot \vec{x})
$$

arithmetic
program"

Example: $y=s \cdot t \cdot(s+t)$ if and only if:

$$
\begin{gathered}
\exists z:\left\{\begin{array}{ccc}
S & \cdot & t \\
z & \cdot & (s+t)= \\
= & y
\end{array}\right. \\
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
S \\
t \\
z \\
y
\end{array}\right) *\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
S \\
t \\
z \\
y
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
S \\
t \\
z \\
y
\end{array}\right)
\end{gathered}
$$

E.g.: $($ sty $z)=(32630)$ is a solution

Pinocchio: From QAP to SNARK (I)

Prove that committed \vec{x} satisfies equations $(V \cdot \vec{x}) *(W \cdot \vec{x})=(Y \cdot \vec{x})$.

Define $V_{i}(\xi), W_{i}(\xi), Y_{i}(\xi)$ by "columnwise Lagrange interpolation"

Consider polynomial $P_{\vec{x}}(\xi)=\left(V_{1}(\xi) s+V_{2}(\xi) t+\cdots\right) \cdot\left(W_{1}(\xi) s+\cdots\right)-\left(Y_{1}(\xi) s+\cdots\right)$:

- $\ln \xi=1: P_{\vec{x}}(1)=\left(V_{1}(1) s+V_{2}(1) t+\cdots\right) \cdot\left(W_{1}(1) s+\cdots\right)-\left(Y_{1}(1) s+\cdots\right)=s \cdot t-z$
- $\ln \xi=2: P_{\vec{x}}(2)=\left(V_{1}(1) s+V_{2}(1) t+\cdots\right) \cdot\left(W_{1}(1) s+\cdots\right)-\left(Y_{1}(1) s+\cdots\right)=z \cdot(s+t)-y$

So $(V \cdot \vec{x}) *(W \cdot \vec{x})=(Y \cdot \vec{x})$
if and only if $P_{\vec{x}}(1)=P_{\vec{x}}(2)=0$
if and only if $(\xi-1) \cdot(\xi-2) \mid P(\xi)$
if and only if there exists $h(\xi):(\xi-1) \cdot(\xi-2) \cdot h(\xi)=P_{\vec{x}}(\xi)$

Pinocchio: From QAP to SNARK (II)

Example.

$$
\begin{aligned}
& \begin{aligned}
\begin{aligned}
\text { value } \\
\text { at } 1
\end{aligned} \\
\text { value } \\
\text { at 2 }
\end{aligned} \\
& \quad\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
S \\
t \\
z \\
y
\end{array}\right) *\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
S \\
t \\
z \\
y
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
S \\
t \\
z \\
y
\end{array}\right) \\
& \quad V_{2}(\xi)=Y_{3}(\xi)=2-\xi \\
& V_{3}(\xi)=W_{4}(\xi)=W_{3}(\xi)=W_{4}(\xi)=Y_{1}(\xi)=Y_{2}(\xi)=0 \\
& W_{2}(\xi)=1
\end{aligned}
$$

$(\xi-1)(\xi-2) h(\xi)=\left(\xi^{2} \mathbf{N}^{2}\right)(t(5)$

Pinocchio: From QAP to SNARK (III)

Lemma $\Rightarrow(32630)$ is solution iff there exists $h(\xi)$ such that

$$
(\xi-1)(\xi-2) h(\xi)=9 \xi^{2}-27 \xi+18
$$

$$
\begin{gathered}
\xi^{2}-3 \xi+2 \quad \frac{\sqrt{9 \xi^{2}}-27 \xi+18}{\frac{9\left(\xi^{2}-3 \xi+2\right)}{0}}-
\end{gathered}
$$

$$
h(\xi)=9
$$

Pinocchio: From QAP to SNARK (IV)

: random, unknown
evaluation key:

$$
g, g^{\Xi}, g^{\Xi^{2}}, \ldots
$$

evaluation/verification key:

$$
g^{V_{i}(\Xi)}, g^{W_{i}(\Xi)}, g^{Y_{i}(\Xi)}
$$

verification key: prover: prover/verifier: $g^{(\Xi-1) \cdot \ldots \cdot(\Xi-d)} \quad g^{h(\Xi)} \quad g^{V_{1}(\Xi) x_{1}+\cdots}$ prover/verifier: prover/verifier: $g^{W_{1}(\Xi) x_{1}+\cdots}$
$g^{Y_{1}(\Xi) x_{1}+\cdots}$
verifier: $e\left(g^{(\Xi-1) \cdot \ldots \cdot(\Xi-d)}, g^{h(\Xi)}\right)=e\left(g^{V_{1}(\Xi) x_{1}+\cdots}, g^{W_{1}(\Xi) x_{1}+\cdots}\right) \cdot e\left(g^{Y_{1}(\Xi) x_{1}+\cdots}, g\right)^{-1} ?$

Magic crypto tool: pairing

$a \cdot b=c \cdot d$

Pinocchio: From QAP to SNARK (V)

Secret sharing MPC

Pinocchio VC

Trinocchio: Distributing the Pinocchio System (I)

Trinocchio: Distributing the Pinocchio System (II)

$$
\left.\| \begin{array}{|l}
\text { prove }\left(g, g^{\Xi}, g^{\Xi^{2}}, \ldots, g^{V_{3}(\Xi)}, g^{W_{3}(\Xi)}, g^{Y_{3}(\Xi)}, s, t\right): \\
\quad z, y=f(s, t) \\
g^{V_{3}(\Xi) z}=\exp \left(g^{V_{3}(\Xi)}, z\right) \\
g^{W_{3}(\Xi) z}=\exp \left(g^{W_{3}(\Xi)}, z\right) \\
g^{Y_{3}(\Xi) z}=\exp \left(g^{Y_{3}(\Xi)}, z\right) \\
n(\xi)=\left(V_{1}(\xi) s+V_{2}(\xi) t+V_{3}(\xi) z+V_{4}(\xi) y\right) *\left(W_{1}(\xi) s+\cdots\right)-\left(Y_{1}(\xi) s+\cdots\right) \\
h(\xi)=\frac{n(\xi)}{(\xi-1) \cdots \cdot \ldots(\xi-d)} \\
g^{h(\Xi)}=\exp \left(g, h_{0}\right) \cdot \exp \left(g^{\Xi}, h_{1}\right) \cdot \ldots \cdot \exp \left(g^{\Xi d-1}, h_{d-1}\right) \\
\quad \operatorname{return} y, g^{h(\Xi)}, g^{V_{3}(\Xi) z}, g^{W_{3}(\Xi) z}, g^{Y_{3}(\Xi) z}
\end{array}\right]
$$

Trinocchio：Distributing the Pinocchio System（II）

```
历ро⿱艹⿸⿻一丿巾
|
```


Trinocchio: Distributing the Pinocchio System (III)

Extensions / Future Directions

- Multiple inputters
- Auditable MPC
- Verifiability by certificate validation
- QAPs + MPC for particular tasks?
- Zero testing
- Comparison
- ...
- Easily programmable distributed verifiable computation

PHILIPS
 3

